Lecture 3 ENE 664 5phing 2004
P. S. Minshneforasad

Adjoint equation
For the homogaveons systan $\dot{x}(t)=A(t) x(t)$, we have the associated adjoint system

$$
\dot{p}(t)=-A^{\prime}(t) p(t)
$$

From

$$
\begin{aligned}
\frac{d}{d t}\left(p^{\prime}(t) x(t)\right) & =\dot{p}^{\prime}(t) x(t)+p^{\prime}(t) \dot{x}(t) \\
& =\left(-A^{\prime}(t) p(t)\right)^{\prime} x(t)+p^{\prime}(t)(A(t) x(t)) \\
& =0
\end{aligned}
$$

it follows that $p^{\prime}(t) x(t)=p^{\prime}\left(t_{0}\right) x\left(t_{0}\right) \quad \forall t$.
Moreover, writing $\beta(t)=\Phi_{-A}\left(t, t_{0}\right) \phi\left(t_{0}\right)$ we get

$$
p^{\prime}\left(t_{0}\right) \Phi_{-A^{\prime}}^{\prime}\left(t, t_{0}\right) \Phi_{A}\left(t, t_{0}\right) x\left(t_{0}\right)=\phi^{\prime}\left(t_{0}\right) x\left(t_{0}\right)+t
$$

Since thin is true for arbitrary $x\left(t_{0}\right), p\left(t_{0}\right)$ it follows that.

$$
\begin{array}{ll}
\Phi_{-A^{\prime}}^{\prime}\left(t, t_{0}\right) \Phi_{A}\left(t, t_{0}\right)=1 & * t \\
\leftrightarrow \quad \underline{\Phi}_{A^{\prime}}\left(t, t_{0}\right)=\frac{\Phi}{A}\left(t_{0}, t\right) & \forall t
\end{array}
$$

From this we also have a corollary;

$$
\begin{aligned}
\frac{d}{d t} \Phi_{A}\left(t_{0}, t\right) & =\frac{d}{d t}\left(\Phi_{-A^{\prime}}^{\prime}\left(t, t_{0}\right)\right) \\
& =\left(-A^{\prime} \Phi_{-A^{\prime}}\left(t, t_{0}\right)\right)^{\prime} \\
& =-\frac{\Phi_{-}^{\prime}}{-A^{\prime}}\left(t, t_{0}\right) A(t) \\
& =-\Phi_{A}\left(t_{0}, t\right) A(t)
\end{aligned}
$$

Canonical Equations
-Consider the linear time-varying system (causurical equation)

$$
\binom{\dot{x}(t)}{\dot{p}(t)}=\left(\begin{array}{ll}
A(t) & -B(t) B^{\prime}(t) \tag{c}\\
-L(t) & -A^{\prime}(t)
\end{array}\right)\binom{x(t)}{p(t)}
$$

Caroling on $\mathbb{R}^{2 n}$. (Assume $L(t) \equiv L^{\prime}(t)$). Let $H(t, x, p)$ denote the function

$$
\begin{aligned}
H: \mathbb{R} x \mathbb{R}^{2 n} & \mapsto \mathbb{R} \\
(t, x, p) & \mapsto H(t, x, p) \\
= & \frac{1}{2} x^{\prime} L(t) x+p^{\prime} A(t) x \\
& -\frac{1}{2} p^{\prime} B(t) B^{\prime}(t) \neq
\end{aligned}
$$

Define the gradient of $H, \quad \nabla H=\binom{\frac{\partial H}{\partial x}}{\frac{\partial H}{\partial H}}$.

$$
\nabla H=\left(\begin{array}{ll}
L(t) & A^{\prime}(t) \\
A(t) & -B(t) B^{\prime}(t)
\end{array}\right)\binom{x}{p}
$$

We cole then rewrite the given system (C) in the form

$$
\binom{\dot{x}}{\dot{p}}=\pi \nabla \quad \text { where } \pi=\left(\begin{array}{cc}
0 & \mathbb{R} \\
-\mathbb{1} & 0
\end{array}\right)
$$

$\dot{\text { i a skew-symmetic civertible matrix. Aby }}$ trajectories of (C) the derivative of H w.r.t. time can be computed using chair rule:

$$
\begin{aligned}
\frac{d H}{d t}= & \frac{\partial H}{\partial t}+\sum_{i=1}^{n} \frac{\partial H}{\partial x_{i}} \dot{x}_{i}+\frac{\partial H}{\partial \phi_{i}} \dot{p}_{i} \\
= & \frac{\partial H}{\partial t}+(\nabla H)^{\prime} \cdot\binom{\dot{x}}{\dot{p}}=\frac{\partial H}{\partial t}+(\nabla H)^{\prime} \pi \nabla H \\
& -2-
\end{aligned}
$$

Since II is shew, the second term on the right is identically zero. If footer, the piasametos A, B, L are time-mivariant, then $\frac{\partial H}{\partial t}=0$ and $\frac{d A}{d t}=0$ $\Rightarrow H=$ constant.

What are canomical equation (c) good for? For one thing, soling Triccati equations.
Leйسа 1
Let $\Phi\left(t, t_{0}\right)$ denote the $2 n \times 2 n$ transition matin for (C). Partition auto block: : $\underline{\Phi}=\left(\begin{array}{ll}\Phi_{11} & \Phi_{12} \\ \Phi_{21} & \Phi_{22} \\ \Phi_{2}\end{array}\right)$ of size $n \times h$. Then:
(a) If $\pi\left(t, \alpha, t_{1}\right)=\left(\Phi_{22}\left(t_{1}, t\right)-Q \Phi_{12}\left(t_{1}, t\right)\right)^{-1}$
or equivalently, if $\left(Q \Phi_{11}(t, t)-\Phi_{12}(t, t)\right)$
(b) $\pi\left(t, Q, t_{1}\right)=\left(\frac{\Phi}{21}\left(t, t_{1}\right)+\frac{\Phi}{22}\left(t, t_{1}\right) Q\right)\left(\Phi_{11}\left(t, t_{1}\right)+\Phi_{12}\left(t, t_{1}\right) Q\right)^{-1}$ then $\Pi\left(t_{1}, Q, t_{1}\right)=Q$ ane, Π satisfies the Ticcati equation,

$$
\dot{\bar{\pi}}=-A^{\prime} \pi-\pi A+\pi B B^{\prime} \pi-L
$$

annuining that the indicated hiverses exist.
Prof: Let, $[x(t),-P(t)] \triangleq[Q,-\mathbb{1}]\left[\begin{array}{ll}\Phi_{11}(t, t) & \Phi_{12}(t, t) \\ \Phi_{21}\left(t_{1}, t\right) & {\underset{\Phi}{22}}(t, t)\end{array}\right]$ clearly, in port (a) above, the $r \cdot h \cdot s=p^{-1}(t) x(t)$.

To verify that $\Pi\left(t, Q, t_{1}\right)=P^{-1}(t) x(t)$ satiofies the Riceati Equation, differentiate.

$$
\frac{d}{d t}\left(p^{-1} x\right)=-p^{-1} \dot{p} p^{-1} x+p^{-1} \dot{x}
$$

Tron the definitive of $[x, p]$ we see

$$
\left.\begin{array}{rl}
{[x,-P]} & =[Q,-1] \frac{d}{d t} \Phi\left(t_{1}, t\right) \\
& =[Q,-1] \frac{d}{d t} \Phi\left(t, t_{1}\right) \\
& =[Q,-\mathbb{1}]\left(-\Phi^{-1}\left(t, t_{1}\right)\right) \frac{d \Phi}{d t}\left(t, t_{1}\right) \Phi\left(t, t_{1}\right) \\
& =-[Q,-\mathbb{1}] \Phi\left(t_{1}, t\right)\left(A(t)-B(t) B^{\prime}(t)\right) \\
\left.-L(t)-A^{\prime}(t)\right)
\end{array}\right)
$$

abich is what are set out to prove.

$$
\text { tho }\left.\quad p^{-1}(t) x(t)\right|_{t=t_{1}}=Q \text { since } \bar{\Phi}\left(t_{1}, t_{1}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text {. }
$$

Pref of part (b)
Define $\quad\binom{\tilde{x}(t)}{\tilde{p}(t)}=\left(\begin{array}{cc}\Phi_{11}\left(t, t_{1}\right) & \Phi_{12}\left(t, t_{1}\right) \\ \Phi_{21}(t, t) & \Phi_{22}\left(t, t_{1}\right)\end{array}\right)\binom{11}{Q}$. cleanly, in pant (b) whore $r \cdot h \cdot s=\tilde{p}(t) \tilde{x}(t)^{-1}$. Rent of the steps similar to the steps in part (a) prof.

Romarte Matrices of the form

$$
P=\left(\begin{array}{cc}
A & Q \\
R & -A^{\prime}
\end{array}\right)
$$

where each of the blocks is $n \times n$ and $Q=Q^{\prime}, R=R^{\prime}$ are called infinitesimally symplectic or hamittoxiau matrices. They satisfy the identity.

$$
P^{\prime} \pi+\pi P=0
$$

Necessary Conditions for Optimality
Theoreue For the system $\dot{x}(t)=A(t) x(t)+B(t) u(t)$ $x\left(t_{0}\right)=x_{0}$, let $u(t)$ be one of the following controls
(a) $u_{0}(t)=-B^{\prime}(t) \Phi_{A}^{\prime}\left(t_{0}, t\right) \xi$ where ξ sotiofie

$$
w\left(t_{0}, t_{i}\right) \xi=x_{0}-\frac{\Phi_{A}}{}\left(t_{0}, t_{1}\right) x_{1}
$$

(b)

$$
\begin{aligned}
& u_{1}(t)=-B^{\prime}(t) \pi\left(t, Q, t_{1}\right) x(t) \\
& \begin{array}{r}
\dot{\Pi}(t)=-A^{\prime}(t) \pi\left(t, Q, t_{1}\right)-\pi\left(t, Q, t_{1}\right) A(t)-L(t) \\
\pi\left(t, Q, t_{1}\right)=Q \\
\quad+\pi(t, Q, t) B(t) B^{\prime}(t) \pi\left(t, Q, t_{1}\right) \\
\pi(t)
\end{array}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& u_{2}(t)=-B^{\prime}(t) \pi\left(t, K_{1}, t_{1}\right) x(t)+v(t) \\
& \dot{\pi}=-A^{\prime} \pi-\pi A+\pi B B^{\prime} \pi
\end{aligned}
$$

$$
\Pi\left(t_{1}, k_{1}, t_{1}\right)=k_{1}
$$

and v such that it minimizes
$\int_{t \leq}^{4} v^{\prime}(\sigma) v(\sigma) d \sigma$ for

$$
\begin{aligned}
& \dot{x}(t)=\left(A(t)-B(t) B^{\prime}(t) \pi\left(t, k_{1}, t_{1}\right)\right) x(t) \\
& x\left(t_{0}\right)=x_{0} ; \quad x\left(t_{1}\right)=x_{1}
\end{aligned}
$$

Thew, there exists a vector fruition $\phi(t)$ (the co-stals such that

$$
\binom{\dot{x}}{\dot{p}}=\left(\begin{array}{cc}
A & -B B^{\prime} \\
-L & -A^{\prime}
\end{array}\right)\binom{x}{p} \quad . \quad x\left(t_{0}\right)=x_{0}
$$

and $u(t)=-B^{\prime}(t) p(t)$.

Prof (a) Let $\quad \phi(t)=\Phi_{A}^{\prime}\left(t_{0}, t\right) \xi$
Then $\dot{\beta}=-A^{\prime}(t) \dot{p}$
with $p_{0}=\xi$ (from page 1 of this lecture).
Sabstitateng u_{0} in the state equation, are get

$$
\bar{x}=A x-B B^{\prime} p
$$

Picking $L \equiv 0$ ensures that $\dot{p}=-A^{\prime} p$

$$
=-\angle x-A^{\prime} P
$$

Thin completes the town g of part (a).
(b) Let $p(t)=\pi\left(t, Q, t_{1}\right) x(t)$

Then substituting u, in the state equation we get,

$$
\bar{x}=A x-B B^{\prime} p
$$

We need to show

$$
\bar{p}=-L x-A^{\prime} p
$$

Differentiate. $\Pi\left(t, Q, t_{1}\right) x(t)$ to get,

$$
\begin{aligned}
& \dot{p}=\dot{\pi} x+\pi \dot{x}=\left(-A^{\prime} \pi-\pi A-L\right) x \\
&+\pi B B^{\prime} \pi \\
&+\pi\left(A x-B B^{\prime} \pi x\right)
\end{aligned}
$$

$$
=-A^{\prime} p-L x
$$

The boundary condition on π turus cito

$$
p\left(t_{1}\right)=Q x\left(t_{1}\right)
$$

(c) Left as an excraise

Tomark we postpone drauniin of the infurite horizon optimal contol prablem and associatel otgetraic Reiccati equations.

Unagy the Causuical Eyvation
Fiom troof of part (a) of the Theoram, it is claor that sohnigg (c) for $\left(x_{0}, p_{0}\right)$, initial cond-times, sweeps out o 'bundle' of state lcostate trajecteries an p_{0} is rasied. Only $p_{0} s . t \quad W\left(t_{0}, t_{1}\right) p_{0}=x_{0}-\Phi_{A}\left(t_{0}, t_{1}\right) x_{1}$ will produce trajectang / bryectrios satisfying and-powit coualitions. End-point error anowated to a qiven to cau be usel to correct p_{0} - Similar remarts opply to cases (b) \& (c).

Analogues of (c) play a cental sole in qevesal optimal control problam . C not necessavily dinear systom with quadratic cost functionals), We vill eucounter these later.

