Electrical and Computer Engineering Department
 University of Maryland College Park, Maryland
 ENEE 660 - System Theory

Mid Term Exam I, 3:30-4:45 p.m.
Thursday, October 7, 2010
Closed book exam. Answer all questions.

Problem 1

Consider a linear map $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by the matrix

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 0 & 0 \\
2 & 0 & 3
\end{array}\right]
$$

Compute the matrix representation of this linear map in the basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ defined by

$$
v_{1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad v_{2}=\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right] \quad v_{3}=\left[\begin{array}{l}
1 \\
0 \\
4
\end{array}\right]
$$

Does this new matrix have any pure imaginary eigenvalues?

Problem 2

Give a clear and complete definition of the concept of adjoint of a linear map.
Consider

$$
\mathcal{U}=\left\{u:[0,2] \rightarrow \mathbb{R}^{2} \left\lvert\, u(t)=\binom{u_{1}(t)}{u_{2}(t)}\right. \text { is a continuous function }\right\}
$$

Let $A: \mathcal{U} \rightarrow \mathbb{R}^{3}$ be the linear map defined as

$$
A u=\left[\begin{array}{ll}
\int_{0}^{2} u_{1}(r) d r & \\
\int_{0}^{2} 3 u_{1}(r) d r & -\int_{0}^{1} u_{2}(r) d r \\
-\int_{0}^{3 / 2} u_{2}(r) d r &
\end{array}\right]
$$

Compute the adjoint of A. State clearly any hypotheses you need for this purpose.

Problem 3

Consider the linear time-varying system

$$
\dot{x}(t)=e^{-t A} B e^{t A} x(t)
$$

where A and B are constant square matrices. Show that a solution to the given system with initial condition $x\left(t_{0}\right)=x_{0}$ is given by

$$
x(t)=e^{-t A} e^{\left(t-t_{0}\right)(A+B)} e^{t_{0} A} x_{0}
$$

Compute this in the special case,

$$
\begin{aligned}
A & =\left(\begin{array}{ll}
0 & 1 \\
-1 & 0
\end{array}\right) \\
B & =\left(\begin{array}{ll}
3 / 2 & 0 \\
0 & 3 / 2
\end{array}\right) \\
t_{0}=1 ; \quad x_{0} & =\binom{1}{1} .
\end{aligned}
$$

Problem 4

Consider the system

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

(a) Give a clear justification as to whether or not it is possible to drive the system from $x_{1}(0)=1, x_{2}(0)=2$, to $x_{1}(1)=x_{2}(1)=0$.
(b) If your answer to part (a) is in the affirmative, determine a control that does the prescribed transfer.

Problem 5

Consider a linear time-invariant system of the form

$$
\dot{x}=(A+\epsilon B) x
$$

where A and B are known but ϵ is a small uncertain parameter. It is of interest to find the sensitivity of the solution at $t=1$,

$$
\begin{array}{r|}
\left.\frac{\partial x(t)}{\partial \epsilon}\right|_{t}=1 \\
\epsilon=0
\end{array}
$$

for a given initial condition $x(0)$. Solve this problem in the special case,

$$
\begin{aligned}
A & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
B & =\left(\begin{array}{ll}
3 / 2 & 0 \\
0 & 3 / 2
\end{array}\right) \\
\text { and } x(0) & =\binom{1}{1}
\end{aligned}
$$

