ENEE 661 Spring 2013 Homeurrte 2
0 due date: February 14 (Thurs Day.)

1. Read carefully the material on Fundamental Theorem of Calculus, from page 10 to page 14 of Lecture Notion 2(b) available ou line. Using. the HINT on page 14 , show that

$$
\begin{aligned}
& \phi_{g}^{-\varepsilon}\left(\phi_{f}^{-\varepsilon}\left(\phi_{g}^{\varepsilon}\left(\phi_{f}^{\varepsilon}\left(x_{0}\right)\right)\right)\right) \\
& =\phi_{-g}^{\varepsilon}\left(\phi_{-f}^{\varepsilon}\left(\phi_{g}^{\varepsilon}\left(\phi_{f}^{\varepsilon}\left(x_{0}\right)\right)\right)\right. \\
& =x_{0}+\varepsilon^{2}[f, g]\left(x_{0}\right)+O\left(\varepsilon^{3}\right)
\end{aligned}
$$

Here $[f, g]$ denotes the Jacobi-Lie bracket of vector fields f and $g:\left(\frac{\partial g}{\partial x}\right) f-\left(\frac{\partial f}{\partial x}\right) g$ $\phi_{f}^{\varepsilon}(x)$ is the flow of the vector field devaluated at time ε on (initial conditions) x.
2. Consider the unicycle and the problem of parking: transport the unicycle from $(x=0, y=0, \theta=\pi / 2)$ to $(x=0, y=1, \theta=\pi / 2)$. Using MATLAB explore the parkering of gorritim: drive, steer, reverse drive, reverse steer, ... to solve this probleve. Suppose you caunost reverse drive. Can you solve the parting problem? If yes, what is the difference beturear the tins solutions?
3. Consider kinematic car in pages 16-18 of Lecture Notes 2(b). Varify the bracket relations for general θ.
[OPTIONAL: Explore the parking algorithm for this setting mumerically]
4. Read chapter 1 of the textbook (H. Khadil - Nonlinear Systems, $3^{\text {nt }}$ Edition, 2002) and do the exercises:
1.11 and 1.18

Problem 1.11 requires basic concepts from ENE 660 system Theory - you may find my notes from foll 2010 of use.
5. Read Appendix A (Mathematical Review) and Appendix B (Contraction Mapping) of the textbook and Lecture Notes 3. or line.

