A

Report

On

Unsupervised Speaker Segmentation of a Two-Speaker Conversation

Submitted by:

A. Ryan Aminzadeh

Mentor: Dr. Carol Espy-Wilson

Research Internships in Telecommunications Engineering (RITE)
MERIT Summer 2005

Table of Contents:

Abstract

 3
1. Introduction

 4

2. Data and Software

 5

3. Segmentation Algorithm

 6

4. Initial Clustering Algorithm

 8

5. Results

 14

6. Discussion

 16

7. Conclusion

 18
References

 19

Abstract

The topic researched was automatic unsupervised speaker segmentation in a two-speaker conversation. Segmentation is achieved by creating initial clusters and iteratively training speaker models using Gaussian mixture models. The models are then improved iteratively and the conversation is re-segmented. Approaches examined for clustering include a k-means clustering algorithm and variations of hierarchical clustering. The latter was used in two stages; first to separate voiced segments from the unvoiced segments, and then to segment the voiced part into two initial clusters. Another approach was to use a set of pre-trained speaker models and selecting the two most likely speakers for creating the initial clusters.

1. Introduction

The problem of automatic, unsupervised speaker segmentation is one that poses great challenges, and whose solutions will yield great benefits in the area of automatic speaker identification[1]. Specific opportunities for improvement in efficiency are in the broad application of audio indexing, which has a large user base in both the forensic world and the commercial arena, identity verification in matters of security, and personalized costumer service through recollection of personal data and preferences.

Speaker segmentation can be done in any of three ways: supervised, partially supervised, and unsupervised. Supervised segmentation is clearly inefficient in that it requires constant monitoring. Partially supervised segmentation, while effective, does not have the complete independence that would define a truly efficient system. It is for this reason that research was done to discover the best means to segment a two-speaker conversation in a totally unsupervised manner, such that the entire process would be completely automated, allowing for a fast, self-sufficient process that performs so well that it does not require human assistance.

In order to gain a useful method for unsupervised speaker segmentation, the most pertinent problem was an algorithm that was capable of handling relatively fast speaker interchanges, such as those that would be detected in telephone conversations. This is dictated by the practical reality that most speaker identification would most likely be done over some type of telephone channel, whether that be handset or cellular. Clean microphone speech, which lacks much of the noise caused by telephone channel distortion, is inherently much easier to analyze and deal with in the context of segmentation. This fact, therefore, was exploited in the algorithms that were designed to identify the best method for speaker segmentation.

The overall goal, therefore, was to find a system that allows a reasonably effective level of robust speaker segmentation in a less-than-ideal channel, with a realistic level of speaker interchange, in order to simulate the type of task such a system would be expected to handle in the practical situations that it is meant to facilitate.

2. Data and Software:

Two sets of data were used in the experiments carried out over the course of the research. The two databases were: the TIMIT database, and the NIST 2000 Speech Evaluation Conversation database. They are described in detail below, along with their specific benefits in terms of the areas of segmentation that were researched:

TIMIT Database [2]:

· Microphone channel with clean speech

· Silence and non-speech removed using an energy threshold.

· Conversations consisted of two speakers’ artificial conversation through data concatenation

· Each conversation lasts 120 seconds, with speaker interchange of 15 seconds

· Elongated interchange period and clean microphone channel allow for easier segmentation

NIST 2000 Database [3]:
· Telephone channel (Electrit handset) with noticeable channel noise

· Silence and non-speech removed using an energy threshold

· Conversations consisted of two speakers’ artificial conversation through data concatenation

· Each conversation lasts 40 seconds, with speaker interchange of 5 seconds

· Short interchange period and electrit handset noise allow for more robust testing

Several different software were used in the experiments, in an effort to maximize versatility in dealing with the challenges that the various algorithms posed in implementation. These software and their uses are described below briefly, and will be elaborated upon in further detail as part of the procedural descriptions.

Matlab v. 6.5:

· K-means clustering command and parameter options

· Hierarchical clustering commands and parameter options

· Median filtering algorithm

HTK v. 3.2.1 [4]:
· Hidden Markov Matrix (HMM) modeling software, used for Gaussian mixtures (GMMs)

· Parameterization of speech data

· Creation of models to represent the Markov probabilities in the system

· Training models with training speech data

· Testing speech to obtain likelihood scores of observed speech given trained models

3. Segmentation Algorithm

Parameterization of Speech:

In order to work with the clustering algorithms that were used in experiments, speech first needed to be represented in the parametric space [5]. In order to do this, the HTK software was used and the following steps were followed:

1.
HTK’s HCopy command was used to parameterize the speech file into a representative set of Mel-Frequency Ceptral Coefficients (MFCCs). Several options are available in parameterization. By convention, either 13 or 20 MFCCs are used. When 13 MFCCs are used, delta and delta-delta (acceleration) coefficients can also be used if desired, bringing the total number of MFCCs to either 26 or 39, respectively.

2.
The MFCCs are calculated at every interval of a designated length of time. Vowel sound data, which is contains extremely useful information regarding the speaker, is usually preserved in an ideal MFCC frame size of 10ms – 30ms, and so a frame size of 10ms was used in order to get the finest resolution possible, and to capture all the finer characteristics of the speaker in the frame.

3.
A window size of 20ms was used in order to create a window overlap, which has a smoothing effect on data by avoiding sudden changes or anomalies. In effect, the frame’s MFCCs are calculated using its 10ms of data, and the 5ms of data before and after it in time. As the window shifts to the next frame, part of the previous frame is also used in the calculation, creating an overlap effect.

Training of Gaussian Mixture Models:

Once speech is parameterized, models needed to be trained in order to carry out the identification process. The key to this step is in the manipulation of HTK’s abilities to model GMMs [6]. For speaker identification, a 3-state HMM is used, with the first state representing entry, the second state representing the observed speaker speaking, and the third state representing end of speech. In essence, the system is calculating the probability of being in the second state of the speaker speaking. Both male and female models were used, and they were taken from either of the two databases listed above, depending on what the specific algorithm demanded. The training procedure is described below described below:

1.
Matlab code was used to generate empty GMM models. These models contained a specified number n mixtures, each with a weight of 1/n, mean μ = 0, and variance σ2 = 1. In our experiments, either 8 or 64 mixtures were used, based on the circumstances. Clearly, a larger number of mixtures would be more meaningful when there is more training data, and would lead to a better distinction of different models.

[image: image1.png]Gaussian Mixture

l

Va4

Gaussian 1

Gaussian 2

N

Figure 1: Depiction of a simple 2-mixture GMM

2.
Once these empty models were created, HTK’s HInit command was used to initialize the empty models by running once through the set of previously calculated MFCCs for the speech, and creating a Gaussian mixture to model the speech, representing the probability density function as a mixture of the order n designated previously.

3.
After initial trained models are created, HTK’s HRest command is used to perform the same actions as the previous HInit command, but runs through a designated number of iterations to refine the initial speech models so that the optimal representation of the speech can be attained. The default 20 iterations were used in these experiments.

Formation of Initial Clusters:
As explained above, three separate algorithms were used in an effort to obtain the best initial segmentation of speakers. These algorithms, k-means, hierarchical, and GMM-based clustering, all used different techniques and configurations to achieve their optimal results. These three clustering algorithms will be discussed in full detail in the next section of the paper. After these initial clusters were obtained, they were run through an iterative process to achieve the final results.

Iterative GMM Re-segmentation

Once initial segments are obtained, they need to be improved to yield a more refined and accurate final results. An iterative process using GMMs [7] is used to achieve this, by following these steps:

1.
Initial segments are used to construct two speech files, each one being recreated from the original speech file based on the segmentation. Once these speech files are constructed, the are parameterized, just as in the training procedure described above, by using HTK’s HCopy command.

2.
After this is done, two empty GMM models are generated using Matlab code, and again a designated number n mixtures are used to model each speaker.

3.
HTK’s HInit command is then used to initially construct a GMM that represents each speaker.

4.
HTK’s HRest command is finally used to iteratively improve the model, up to the default 20 iterations.

5. Once models are trained for each of the two initial segments, which are assumed to contain mostly one speaker, (this assumption of segment purity is important for this iterative refinement to work correctly) the original speech file is divided into parts of a designated length. In our experiments, either 300ms or 500ms were used, for reasons relating to the nature of the experiments, which will be explained as part of the algorithm descriptions.

6. Each of these parts is then parameterized using HTK’s HCopy command, and then, using HTK’s HVite command, the software calculates the log-likelihood of each part belonging to each of the two speakers, based on the Gaussian mixtures used to model each speaker. The HVite command outputs the model that is most likely to be speaking in each part of the original speech file, given the observed speech in that part.

7.
Once each part has been assigned to one of the two trained speakers through the HVite command, new speech files are constructed from this segmentation using the original speech.

8.
After the newly segmented speech files are created, steps 1-7 are repeated for a designed number of iterations, in order to keep improving the segmentation by re-training increasingly purer models to segment the speech with. The number of iterations used was 20, because based observations showed no significant improvement in re-segmentation beyond this number. The last speech files that are created represent the final, refined segmentation of the original speech.

4. Initial Clustering Algorithm

K-means Clustering

The k-means clustering algorithm takes the parameterized speech, and treats each 10ms frame of speech as a point in an n – dimensional space, with n being the specified number of MFCCs. For this algorithm, a set of 20 MFCCs was used, because when dealing with definitive distances, expansion of the space to 26 or 39 dimensions, it is assumed, would not yield a significant marginal benefit. For the implementation of this algorithm, Matlab’s “k-means” command was used, with the necessary parameters used to follow the specific steps of the algorithm, given below:

1.
Each frame of speech, treated as a data point in a 20-dimensional space, is put into that space, and a number k clusters are designated as the desired result. In our case, since we are examining two-speaker conversations, we set k = 2.

2.
Two random points in the 20-dimensional space are assigned as cluster centers, and each data point in the space is then assigned to the group that has the closest cluster center.

3.
At the end of one iteration after each point has been assigned, the center of each group clearly will have changed based on the positions of the points in the space and the random initial positions of the cluster centers. Therefore, the new cluster centers are calculated.

4.
Once new cluster centers are calculated, steps 2 and 3 are repeated, except for the random assignment of cluster centers, because now there is a basis for assigning and recalculating them.

5.
This process continues until the recalculated cluster centers stop moving, and the best cluster formation possible has been achieved. This also indicates that the distance between each point and its cluster center has been minimized, given the cluster structure and random initial cluster center locations.

[image: image2.png]

Figure 2: Example of K-Means Clustering, with squares representing cluster centers

The data used to train to test this algorithm were from the TIMIT database. This is because the conversations in that database are much cleaner and have slower rates of speaker interchange, which k-means can, by its nature, deal with much more easily. This is because the variability inherent in the random initialization of points can be somewhat neutralized by slower speaker exchange, making clusters more definitive in space.

As the results will indicate, this algorithm’s use of a random initialization causes the results to be both variable and inaccurate. Inconsistency and lack of cluster purity lead to segments that are not reasonably dominated by one speaker or the other. This gives rise to a problem that violates the assumption made when running the initial segments through the iterative GMM identification process to improve them, which is that the models trained off the initial segments will contain mostly one speaker. Since this is not the case here, the initial models were tainted with significant chunks of the other speaker, and so the identification of parts of the original speech was inaccurate because both speakers appeared prominently in both models. Thus, it was decided that k-means clustering was not a good enough method to even run the iterative GMM process on, and so segments were left as is.

Hierarchical Clustering

The hierarchical clustering algorithm[8] involved a similar initial approach as k-means, by taking the parameterized 10ms frames of speech and representing them as data points in a 20-dimensional space. However, after this point, a very different algorithm is used: one that eliminates randomness from the process, and uses a much more precise linking criterion to create clusters. Several Matlab commands were used in this algorithm, the most important one being “clusterdata”. A detailed description of the steps it implements in the process of hierarchical clustering is given below:

1.
All data points are placed in a 20-dimensional space, and the Matlab command “pdist” is run by “clusterdata”. The command, given the parameter Euclidean, calculates all pair-wise distances of all clusters, which can be sets of either one or more data points in the space, using Euclidean distance as the metric. The reason for this is that it is the most commonly used and reliable distance measure, and is the most logical precursor to the following step.

2.
Once “pdist” calculates all pair-wise distances of clusters, “clusterdata” runs the “linkage” command, which goes through all the pair-wise distances, and links together the two clusters that have the minimum Ward’s distance (parameter specified in Matlab). Ward’s distance, which is an inner squared distance (variance minimizing), uses Euclidean distance in its measure. The Ward’s linkage distance (decision rule for linking clusters) is the smallest incremental increase in the total within-cluster sum of squares as a result of joining two clusters. The within-cluster sum of squares is defined as the sum of the squares of the distances between all data points in the cluster and the center of the cluster.

3.
Once two clusters are linked, they are treated as one cluster through “clusterdata” using Matlab’s “cluster” command. This process described in steps 1 and 2 continues until the desired number of clusters, two in the case of two-speaker segmentation, is arrived at by linking clusters. This number is another parameter of the Matlab command “clusterdata”. The process can be described as creating a cluster tree that starts with as many clusters as there are frames of speech, and ends with 2, which are the two segments.

4.
Experimentally, it was determined that this initial clustering yielded one segment of unvoiced speech (fricative sounds), and one segment of both speakers’ voiced speech. In order to remedy this problem, another clustering, run by the same “clusterdata” command, was performed on the voiced speech segment from the initial clustering, which was reconstructed from the original speech. This then yielded two voiced clusters of the two speakers.

5.
Once the voiced segments were attained, a filtering algorithm was applied to the cluster data corresponding to the original speech. Using a non-overlapping window of 10 frames (100ms), the algorithm found the cluster that had the majority data points in the window, and assigned every frame in that window to that cluster. This was done because it was seen that 10ms frames of speech contain such sporadic data that anomalies of one or even several frames were likely to occur in the data, and a better result would be produced if they were filtered out.

[image: image3.png]1

1l

r
Smallest

Figure 3: Illustration of Hierarchical Cluster Tree, From Small Clusters to Two Final Clusters

Another algorithm using hierarchical clustering was also tried, but with much less success. It involved initially grouping together chunks of 10 frames each, and then calculating the minimum pair-wise distance within these chunks as a manner of linkage, rather than between individual frames. This algorithm, again, did not produce good results and thus the first algorithm’s results were used in the iterative process.

For this experiment, training and testing data was once again used from the TIMIT database. The clean speech of the microphone channel and slow speaker interchange are conducive to smoother clusters, which the filtering process described in step 5 tries to enhance further. The quality of some results dictated that a more difficult database ought not be used with this algorithm.

Since the results, as will be discussed later, were relatively good for this algorithm, its segments did in fact contain a majority of one speaker. Therefore, these segments were used in the iterative GMM identification process. Success varied based on the initial segments, which will, again, be discussed in the results section of the paper.

GMM-Based Clustering

The GMM-based clustering algorithm explored a probability-centered approach to clustering, rather than a purely Euclidean approach, as in the previous two algorithms. This new approach was viewed as a strength of the algorithm, because anomalies in pure distance can easily occur and skew data, whereas the probabilistic nature of this method looks at the overall picture, in a manner of speaking. The HTK software was the primary method of implementation for this algorithm, whose steps are described below:

1.
First, a large database of male and female speakers is chosen to be the training data. Once the database has been identified, all the speech files in the database are converted to parameterized form using HTK’s HCopy command.

2.
The first speech file from the male database is chosen to be the first model in a pool of speakers. This file becomes the trained file, and HTK’s HInit command is run to initialize a blank GMM created in Matlab. This model contain 64 Gaussian mixtures, because the length of the files of the NIST 2000 database used are much longer, and therefore more resolution can be attained by using this larger number of mixtures.

3.
Next, HTK’s HRest command is used to iteratively improve the model of this train file. Like before, the default 20 iterations are used.

4.
After this has been done, HTK’s HVite command is used to calculate log-likelihood scores for all the remaining speakers in the database in matching them with the speaker in the pool. The goal is to find the least similar speaker in the database to the speaker in the pool. Once it is found, it is added to the pool.

5.
This new speaker is then trained using HInit and HRest, and then HVite is used to calculate the log-likelihood scores of all speakers in the database with all speakers in the pool. The speaker with the lowest sum of likelihood scores is chosen to be the least similar to the entire pool, and then added to the pool.

6.
Step 5 is repeated until a desired number of speakers are chosen for the pool. It is important not to choose too few, because them two speakers can possibly be identified as one due to lack of diversity, and not to choose too many, because different parts of a speakers speech might be identified as different speakers. The optimal number was chosen to be 8 male speakers. Steps 1-5 were then repeated for the female database, until 8 female models were chosen.

The objective of the above 6 steps of the algorithm was to prepare a list of potential speakers to be used in identification. Intuitively, results should improve if dissimilarity among speaker models is maximized, such that different speakers are definitively segmented as two separate speakers.

7.
Once these 16 models are prepared, a test speech file is then split into parts of a designated length. The length chosen was 1 second, because speaker ID with fast interchange is, in literature [9], deemed to be “difficult” with a time interval of less than 2 seconds, and so the true effectiveness of the system in fast interchange situations would truly be tested if 1 second was used.

8.
Each part is parameterized using HTK’s HCopy command. Experiments were run using both 20 MFCCs and 39 MFCCs, because in the probabilistic approach of this algorithm, the marginal resolution given by additional coefficients has a greater chance of yielding improved results.

9.
Next, each part is run through HTK’s HVite command, and identified as most likely belonging to one of the 16 models in the pool of potential speakers.

10.
The number of identifications of each speaker in the pool is counted, and the assumption is made that the two speakers with the most occurrences are the closest matches for the two speakers in the original conversation.

11.
The two most frequently identified speakers are chosen and the all the original 1 second parts of speech are then identified as being one of the two speakers, using HTK’s HVite command once again.

12.
Once these identifications have been made, the original speech file is segmented according to the identification of the parts, and two speech segments result.

For this experiment, the NIST 2000 Speech Recognition Evaluation database was used. The reason for this was that the noise created by telephone handset channel disruption has a less deteriorating effect on probabilistic models than on distance measures, as explained earlier, because of the insensitive GMM reaction to anomalies in data. Also, the fast speaker interchange of 5 seconds can be handled because the data is being tested every 1 second, and so no smoothing needs to be done, and if 1 second can be handled, 5 seconds certainly can be. Overall, since this method yielded the most promising results, it was felt that the method was more robust than the previous two algorithms, and thus was capable of being tested in a harsher, more realistic environment.

Again, since the results of this experiment yielded very good segmentation in the initial segments, these segments were run through the iterative GMM identification algorithm to re-segment the data in a way that improved the segments and removed any sort of anomalies that may have occurred in the initial result.

5. Results
K-Means Clustering:
K-means clustering yielded the worst results of the three algorithms. Points to note are the following:

· The clusters were highly impure, usually containing almost half of one speaker and half of the other.

· Clustering on the same conversation would yield different results each time due to random initialization

· Cluster impurity did not allow iterative GMM identification process to be run on initial clusters

Hierarchical Clustering:

Hierarchical clustering yielded much better results than k-means.

Specific results were not quantified for this algorithm because there were still problems with the segmentation. This is explained in the discussion of the evaluation. A breakdown is given below:

· Male-Female Conversations:

· Very good segmentation was done on about half of the male-female conversations tested by this system. The other half of the conversations was not segmented too well.

· The iterative GMM identification process was found to slightly improve segmentation in both cases, but the difference was not readily noticeable.

· Male-Male and Female-Female Conversations:

· Poor segmentation was done across the board for same gender conversations. It was found the algorithm implemented was in fact grouping together similar spoken sounds of different speakers, rather than spoken data of the same speaker.

· The iterative GMM identification process did not improve these segments at all, because the clusters were so impure that the data trained on did not accurately represent just one speaker.

GMM – Based Clustering

This algorithm yielded, by far, the best results. The results of the initial segmentation, before the iterative process was run, are shown in table 1 below, with results for both 20 and 39 MFCCs. Error is calculated in the following manner: For each 40-second conversation from the NIST 2000 database, each 1 second part is identified as either speaker 1 or speaker 2, and due to exact 5 second speaker interchange, it is known that each 5 seconds should be one speaker or another. Therefore, error is given as number of 1-second parts misidentified.

Table 1: Error of each Test Conversation

	39 MFCCs (Error in seconds)
	20 MFCCs (Error in seconds)
	Speaker:

	6
	7
	Male-Female

	2
	4
	Male-Female

	8
	6
	Male-Female

	6
	0
	Male-Female

	2
	3
	Male-Female

	12
	14
	Male-Male

	13
	11
	Male-Male

	9
	15
	Male-Male

	14
	16
	Male-Male

	17
	17
	Male-Male

	17
	9
	Female-Female

	20
	13
	Female-Female

	11
	9
	Female-Female

	6
	13
	Female-Female

	12
	12
	Female-Female

An overall summary of error rates is given below in table 2, with error rate given as an average percentage of the 40-second conversations misidentified:

Table 2: Overall Summary of Error Rates before GMM Iterations

	39 MFCCs

(Error as avg %)
	20 MFCCs (Error as avg %)
	Speaker:

	12.0
	10.0
	Male-Female

	27.5
	36.5
	Male-Male

	33.0
	28.0
	Female-Female

6. Discussion

K-Means Clustering

As explained in the description of its algorithm, a key feature of k-means is that it randomly places k cluster centers in the 20-dimensional space that was used. Different starting locations of the cluster centers yielded drastically different results, and so the segmentation was very inconsistent each time it was run on the same test speech. In addition to this, cluster purity was never achieved, as no observations were made of segments containing a majority of one speaker. As a result, the iterative GMM identification was not used on the initial clusters, and the over all results did not show an acceptable segmentation.

Hierarchical Clustering

While the first clustering segmented voiced from unvoiced segments, the second clustering did reasonably well in segmenting the two speakers. While these two segments did not contain parts of the speech of each speaker, such as fricative (hissing sounds), those sounds were deemed to be immaterial in the identification of the speaker, due to the fact that the clustering algorithm seemed neutral to the speaker in the case of these sounds, and grouped them together based solely upon the sounds detected.

· Male-Female Conversations:

As mentioned above, it was found that about half of these conversations were reasonably well segmented. Upon careful observation, it was found that those conversations that were not segmented as well had in common a very obvious characteristic of having either a feminine sounding male or a masculine sounding female as one of the speakers. It follows logically that this convergence of voice characteristics would lessen distances between clusters, therefore making it much more difficult to accurately segment the conversation, as was found in these cases.

· Male-Male and Female-Female Conversations:

Implementation of this algorithm on these conversations resulted in impure clusters that contained similar spoken sounds from different speakers. This is consistent with the observed segmentation of voiced speech from unvoiced speech in the first round of clustering in this algorithm, regardless of speaker. Clearly these initial segments could not be used in the iterative GMM identification process because they could not accurately train the mixture models for one speaker or the other.

GMM-Based Clustering:

Success of the initial algorithm can be gauged, generally, from cluster purity. Experimentally it was found that for successful segmentation using the iterative GMM identification method, the initial segments ought to be at least about two-thirds of one speaker. This was the case in most of the initial segmentations.

The first important observation that we can make about these results is that the use of either 39 MFCCs or 20 MFCCs in this GMM-based algorithm is inconclusive as to which yields better results.

In addition to this fact, we can see that for male-female conversations, an average of approximately 4 seconds of speech is misidentified in a 40 second conversation. This excellent rate of success indicates that there was, in fact, no need to perform the iterative GMM identification process on these segments, because they were already almost completely pure, and ready to be put through a speaker identification system.

For the same-gender conversations, the iterative GMM identification was run, but the difference produced to the segments turned out to be negligible: either no change or, at best, 1 second of speech correctly re-identified. As a result, the error rates given in table 2 for the pre-GMM iterations can also be applied to the results after they were put through that process.

As discussed earlier, a reasonable threshold for error is about 33% for proper identification to be carried out. Observing the results in table 2, using 39 MFCCs does in fact meet the requirements to be deemed a practical system for two-speaker segmentation.

7. Conclusion

At the conclusion of the research conducted into exploring effective methods of speaker segmentation in a two-speaker conversation, several things have been made clearer. The results of the three algorithms that were researched yielded definite indications of their effectiveness in performing the task at hand.

K-means clustering was shown to be very ineffective by virtue of its random initialization and consequently, its inconsistency in producing speaker segments. In addition, its segments were never observed to be near pure enough to be useful in the task of speaker identification.

Hierarchical clustering was observed as being more effective than k-means, but still had its shortcomings. Its tendency to cluster together similar sounds rather than same-speaker data was circumvented by applying a second round of clustering, but with same-gender speech data, this problem could not be resolved adequately enough to provide satisfactory results in segmentation.

Gaussian mixture model based clustering provided the best segmentation. Different-gender conversations were segmented almost perfectly in most cases, and there was no need to use the iterative GMM identification process to improve the segmentation; it was already good enough to be used in speaker identification systems. For same-gender conversations, while the segmentation was not perfect, and the iterative process did not improve the segmentation drastically, the algorithm did a good enough job to have satisfactory segmentation for speaker identification to be performed.

Also, the GMM-based algorithm was able to perform in a much more realistic, difficult environment, using NIST 2000 data on electrit handset telephones that had channel noise in the conversations. Also, this robust system was able to handle 1-second speaker identifications, which qualifies, by convention, as fast speaker exchange. The 5-second speaker interchanges that this algorithm handled also show its versatile nature and promise for success in two-speaker segmentation in realistic applications of automatic speaker identification.

References

[1] J. Campbell, JR., “Speaker Recognition: A Tutorial”, in Proceedings of the IEEE, Vol. 85, No. 9, September 1997.

[2] TIMIT Database: <http://www.mpi.nl/world/tg/corpora/timit/timit.html>

[3] NIST Speech Group: <http://www.nist.gov/speech/>

[4] HTK version 3.2.1: <http://htk.eng.cam.ac.uk/>

[5] D.A. Reynolds, “An Overview of Automatic Speaker Recognition Technology”, ICASSP 2001.

[6] D.A. Reynolds and R. Rose, “Robust Text-Independent Speaker Identification Using Gaussian Mixture Speaker Models”, IEEE Transactions of Speech and Audio Processing, Vol. 3, No. 1, January 1995

[7] A. Cohen and V. Lapidus, “Unsupervised Speaker Segmentation in Telephone Conversations”, IEEE 1996.

[8] L. Wilcox et. al., “Segmentation of Speech Using Speaker Identification”, Proc. ICASSP, Vol. 1, pp. 161-164, 1994.

[9] B. Gold and N. Morgan, “Speech and Audio Signal Processing”, John Wiley & Sons, Inc., New York, 2000.

PAGE
5

