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Abstract 

 
     3D modeling of human shape and motion 
is a challenging problem with widespread 
applications, such as motion capture and 
human-computer interaction.  We create an 
integrated system that executes, in close to 
real time, all the steps needed to create a 
voxel representation of a human using 2D 
data acquired from multiple cameras.  A 
robust background model and background 
subtraction algorithm are included in this 
system to create a 2D silhouette of the 
human subject.  A voxel based feedback to 
the system to refine the 2D silhouettes is 
also considered.   
 
1. Introduction 

 
     The 3D reconstruction of a human model 
in a scene has vast applications in the fields 
of virtual reality, surveillance, human 
machine interface, and motion capture.  
Building a 3D model is the basis for 3D 
human tracking, where the model 
parameters need to be estimated in time to 
reflect the motion of the person.  Though it 
is possible to achieve a 3D reconstruction of 
a human through the use of markers or other 
devices attached to the human body, this is 
not natural and therefore not practical for 
applications such as surveillance.  Instead, it 
is preferable to use a multiple camera 
system that is calibrated in a way to allow an 
efficient representation of the human from 
multiple angles.  This is an area of research 
known as markerless motion capture [8]. 

     Before obtaining a 3D reconstruction of a 
human, the object has to be segmented from 
the background in all of the camera images.  
This process is known as background 
subtraction, or foreground segmentation 
[10].  In indoor capture environments, it 
involves creating a stable background model 
that compensates for changes in illumination 
as well as noise from the image acquisition 
process.  This background model is 
subtracted from the foreground images, 
which consist of the human located in the 
same background, to create a silhouette of 
the human’s body.  
     Silhouettes created through background 
subtraction form the basis for creating a 
volumetric model that represents both the 
shape and position of the human in world 
space.  This is done through the principle of 
perspective projection, by which the object 
has to lie within the bounding volume 
formed by the silhouette and the camera 
viewpoint [11].  Therefore, by using 
multiple silhouette images from different 
viewpoints, the 3D shape of an object can be 
reconstructed by intersecting all of the 
bounding volumes [11].  This method is a 
form of shape from silhouettes, or voxel 
carving, which can be used to obtain an 
accurate 3D human reconstruction due to the 
smooth nature of human beings.       
     In the following sections we present a 
system for obtaining both silhouettes and 
voxel data in close to real time.  The 
structure of the system is discussed in 
section 3.  The background subtraction and 
voxelization algorithms are discussed in 
sections 4 and 5, respectively.  Finally, a 
summary of the results and a discussion of 
future ideas is discussed in sections 6 and 7.   



 
2.     Capture Environment 
    
     Most of the image capture was done in 
the Keck Lab at the University of Maryland.  
The lab contains 16 stations at different 
viewpoints that each have 2 cameras 
mounted on them, for a total of 32 different 
cameras.  As of now, this lab is going 
through an upgrade which involves the 
acquisition of 8 to 10 Pixelink 7A142 color 
firewire cameras.  Currently only two 
cameras are operational and they provide 
synchronized images at 512x640x3 
resolution and 15 fps.  Due to the lack of 
cameras and calibration, though, acquisition 
of complete voxel data was not possible. 
     Due to the inability to obtain voxel data 
from the Keck Lab, the system that was 
created was simulated using images courtesy 
of the Stanford BioMotion Laboratory.  
These images were taken from 8 cameras at 
different viewpoints in good lighting.  They 
were 494x656 ppm RGB images taken in an 
indoor background. 
     The initial development of algorithms for 
background subtraction and voxel 
acquisition was done using MATLAB.  
After successful implementation in 
MATLAB, the algorithms were then coded 
in C with the aid of functions provided by 
the Intel OpenCV library.  This allowed for 
a faster implementation in order to achieve 
the goal of a system that performs in close to 
real time.     
 
3.     System Design 
 
     The goal of the system is to perform a 
method of acquiring voxel data quickly and 
online to form the basis for later exploration 
into parameter estimation of a human model 
and tracking of this human model.  A robust 
background subtraction algorithm is 
presented which is focused towards indoor, 
cluttered environments.  The system also 
implements a method of voxel carving 
similar to the one used by Cheung et. al[11].  

     The structure of the system in theory 
involves the use of 5 computers.  4 of the 
computers each write to disk the captured 
images from 2 cameras at different 
viewpoints.  An external trigger is sent out 
from the main computer in order to 
synchronize all eight of these cameras.  Each 
computer then performs background 
subtraction and partial voxelization for the 
two cameras pertaining to it.  A fifth 
computer computes the final, complete 
voxelization from the partial voxel data 
obtained from the other computers.  This 
design is structured so that parallel 
processing can be used in order to make the 
implementation as fast as possible.   
     It was not possible for this system to be 
fully realized in time for the completion of 
this project, but the programs to perform 
background subtraction and compute voxel 
data are modeled after this theoretical 
design.  
 
 
 
 
 
 
4.     Silhouette Generation 
 
4.1   Previous Work 
     Previous work in this subject has focused 
on eliminating some of the key underlying 
problems that are associated with 
background subtraction.  Illumination 
changes, shadows, and highlights are the 
most common problems in background 
subtraction that cause pixels to be 
misclassified.  Other problems which occur 
include backgrounds that vacillate, such as 
waving trees, foreground objects that are 
camouflaged, and background objects that 
have been moved [12].  The latter set of 
problems primarily occur in outdoor 
environments, which are more variable, and 
therefore require more complex algorithms 
for detecting objects.  For example, there are 
algorithms that use single or multiple 



Gaussian distributions to model each 
pixel[1,4].  With these algorithms, 
distributions of pixels in the background are 
compared to distributions of pixels in run-
time images to classify a pixel as foreground 
or background.   Other algorithms for 
outdoor environments use adaptive kernel 
density estimation techniques to build 
statistical representations of the background 
and foreground [5,13].  These techniques 
deal with the uncertainty that is inherent in 
outdoor scenes.   
     The above algorithms serve no purpose 
in indoor environments because they offer a 
complexity that is unnecessary for the 
circumstances.  For instance, any 
illumination changes dealt with indoors are 
much more gradual, unlike the abrupt 
changes in illumination that sunlight can 
create.  Even in a very still outdoors 
background there is still slight movement, 
such as the wind moving objects and cloud 
movement.  Indoors, these things don't 
occur, and the main concern is only dealing 
with shadow removal.  Therefore, a complex 
statistical background model is not 
necessary for algorithms focused on indoor 
capture environments.    
     Previous background subtraction 
algorithms dealing with indoor 
environments include the Pfinder system [1].  
This system uses a Gaussian model of each 
pixel and classifies a given run-time pixel as 
foreground or background based on the 
mean and covariance of that pixel’s 
distribution over time.  The Pfinder uses the 
YUV color space to model the scene 
surrounding the human as a texture surface, 
with each point  on the surface associated 
with a mean color value and a distribution 
about that mean [1].  The W4 system uses 
the YUV color space in an indoor 
environment as well.  In this system, the 
background is modeled by representing each 
pixel by its minimum and maximum 
intensity values, as well as its maximum 
intensity difference between consecutive 
frames.  Once this model is obtained, 

foreground segmentation is done through a 
four stage process: thresholding, noise 
cleaning, morphological filtering, and object 
detection [3].   
     The algorithm presented here for 
background subtraction is most similar to 
that of Cheung et al [11].  Their algorithm 
uses a small number of region- based 
thresholds for each camera in order to 
classify pixels.  The thresholds are based on 
the angle and the intensity difference 
between the RGB color vectors in the 
background model and in the current 
images.  They have an upper and lower 
threshold for the intensity difference for 
each pixel.  If a pixel is above the upper 
threshold, it is part of the foreground, and if 
it is below the lower threshold, it is part of 
the background.  Those pixels that have an 
intensity difference in between the upper 
and lower thresholds are subjected to a third 
threshold which measures the angle, or color 
difference, between RGB vectors.  This third 
threshold is used in order to eliminate 
shadows, which can often be misclassified 
as part of the object.  This is because a 
shadow will have lower intensity than the 
background even though it has the same 
color information.  The color angle between 
the shadow and the background is therefore 
small, and is classified as background if it 
does not pass the third threshold.   
     Cheung et. al also use a region based 
approach to their thresholds, since shadows 
tend to occur in certain regions (i.e. floor) 
and not others (i.e. above floor) [11].  They 
use these two separate regions to implement 
their thresholds, and therefore have a total of 
6 thresholds for each of their five cameras.   
 
4.2  Background Modeling           
     The background images in our system are 
obtained during a period of capture in which 
there is no person in the scene.  10 images, 
or one second worth of images at 10 
frames/s, are captured and averaged to 
create a mean background image.  This 
model is sufficient for the system, since it 



works on an indoor environment where there 
are not drastic illumination changes or 
moving background objects.  This 
background modeling is done for all 8 
cameras before the background subtraction 
process begins. 

                 Figure 1: Background model   
4.3  Background Subtraction   
     The silhouette generation that in the 
system involves the same color information 
used to determine thresholds in Cheung et. 
al, but a smaller number of thresholds.  Only 
two thresholds are used for each camera, one 
that uses intensity difference and one 
involving color angle. 
     For a background image pixel, where the 
color vector for the (i,j)th pixel is denoted 
by B(i,j), and for a run-time foreground 
image, whose color vector is F(i,j), the 
formula to obtain the silhouette image S(i,j) 
is given by: 
 
1. Calculate the magnitude of the intensity 
difference 
 
D(i,j) = || F(i,j) – B(i,j) || 
If  D(i,j) > DIFF_THRESH  
 then the (i,j)th pixel is foreground. 
 else the (i,j)th pixel is background. 
 
2. Calculate the angle 
 
θ = [((F(i,j) • B(i,j)) / (||F(i,j)|| ||B(i,j)||)]   
If θ > ANGLE_THRESH  

 then the (i,j)th pixel is foreground. 
 else the (i,j)th pixel is background.  
 
3. Do the following AND operation: 
 
S(i,j) = D(i,j) AND θ(i,j) 
 
4. Dilate image 
 
     Here, ||F|| and ||B|| represent the norm of 
F and B, respectively, and •·is the dot 
product operator.  In the first threshold, the 
color vector for each pixel in the current 
image is being checked to see whether it 
differs enough in magnitude from the 
background pixel to be considered part of 
the object.  The second threshold checks to 
see if the angle between the background and 
current image is large enough for the pixel 
to be considered part of the object, since an 
angle that is small is most likely a shadow.  
The threshold values, DIFF_THRESH and 
ANGLE_THRESH, are predetermined 
manually by studying the color and shadows 
of the room before starting the system.  This 
is preferable because a pixel-based method 
     
 
 
 
 
     
    
 
  
 
 
 
 
 
                Figure 2a: Foreground Image 
                             



                   Figure 2c: Difference Image 
 
 
uses a large number of thresholds that are 
usually determined by the color variances 
and can’t be fine tuned individually [11].   
     After each threshold is computed, the two 
thresholded binary images are ANDed 
together in order to remove the shadows and 
noise.  The final silhouette image is then 
dilated in order to fill any small holes that 
appear in the body.   The resulting images 
that are formed after thresholding are shown 
for one frame in figure 2.    

                  Figure 2b: Angle Image 
 
                   Figure 2d: Final Image 
 
 
 
 
5   Voxel Acquisition 
 
5.1   Previous Work 
     Voxel carving, or shape from silhouettes, 
is a process that uses camera calibration 
parameters to produce a 3D volumetric 
model of an object based on 2D silhouette 
images.  As stated in [11], when a silhouette 
is reverse-projected perspectively into the 
world space, a conic surface is obtained 
starting at the camera viewpoint, intersecting 
the silhouette, and finally enclosing the 
entire object.  Here the voxels have a conic 
shape and the size varies with distance from 
the camera.  Intersecting the conic volumes 
from all the images creates the visual hull, 
defined as the maximal object that gives the 
original object's silhouette from any 
viewpoint [14].  In practice, however, this is 
not a preferable method of constructing a 
volumetric model because it is 
computationally expensive [8,11].   
     A more preferable method of voxel 
acquisition involves the use of a rectangular 
bounding box that encloses the relevant 
world space [8].  For example, in the case of 
human subjects, this could be a 2m x 2m x 
2m cubic grid of voxels that surrounds the 
human.  Each voxel is then projected to the 
silhouette images using calibration data 
which contains the internal and external 
camera parameters that allow the 
transformation between 3D world 
coordinates and 2D image coordinates.  
Once this is done, the index of the pixel that 
corresponds to its voxel is checked to see if 
it lies within the silhouette of the object.  A 
voxel whose projection resides in the 
silhouette of all or most of the cameras is 
considered to belong to the object, and those 
that do not are carved away from the grid.     



     Before voxels are projected, however, a 
decision must be made on which and how 
many vertices of the voxel should be 
projected to the image.  One method is to 
perspectively project all 8 vertices of the 
voxel to each image plane and compute the 
convex hull of the eight projected points on 
the image.  By testing all of the pixels inside 
the convex hull for all of the silhouette 
images, the voxel can then be classified as 
part of the object or not.  Cheung et. al 
devised an algorithm that followed this 
method but instead tested Q uniformly 
distributed pixels inside the convex hull of 
each voxel for each image [11].   If enough 
of these chosen pixels were inside the 
silhouette in all of the cameras, the voxel 
would be part of the foreground object. 
     A third method of computing voxels was 
presented by Szeliski and is similar to the 
previous one in that it starts with a 
predefined volume of interest with which to 
begin shaping.  It involves an octree 
representation in which the bounding box is 
recursively subdivided into smaller voxels 
until a voxel is fully occupied or empty [7].  
This creates a voxel resolution that matches 
the object resolution exactly [8]. 
     Many of the techniques used for 
acquiring voxels use voxels of equal size 
because this assumption has computational 
benefits.  For instance, having the voxel 
position and size predetermined allows for 
look-up tables that contain depth and 
projection information to be built off-line.  
This speeds up the on-line processing time 
and is useful for real-time applications.   
 
5.2   Voxelization Method 
     To be able to test the voxel acquisition 
process, it was necessary to use images from 
the Stanford BioMotion Lab along with the 
calibration data used for those cameras.  
Silhouette, foreground, and background 
images from multiple cameras are shown in 
figure 4 in Appendix A.     

     The method used by this system involves 
a fixed number and size of voxels.  The 
algorithm finds the 2D and 3D center of 
mass of the object in order to create a 2m x 
2m x 2m bounding box around the object at 
any given time.  Once the region of interest 
is determined, a grid of voxels that are each 
10mm x 10mm x 10mm in size is produced.  
The center point of each voxel is then 
perspectively projected to the silhouette 
images using the calibration data from all 8 
cameras.  The pixel on the image that is the 
projection of the center of the voxel is then   
tested to see if it lies within the silhouette.  
This is done for each voxel for all 8 camera 
images and a running sum of the number of 
cameras that a voxel agrees with is kept.  
This number is then checked to see if it 
meets a threshold, which in our case is seven 
(8 cameras must agree).  The voxels that 
meet this threshold are considered true 
voxels and therefore part of the actual 
object, and the ones below the threshold are 
not included in the final reconstruction.  The 
final reconstruction from multiple angles is 
illustrated in figure 3.   
     The threshold for the voxel computations 
depends greatly on the background 
subtraction algorithm that is used.  If the 
background subtraction algorithm leaves 
holes in the body of the human, then the 
threshold for computing the voxels must be 
lowered or holes will show up in the 3D 
reconstruction.  Our background subtraction 
strives to minimize the holes at the expense 
of blobs.  This is why we choose a very 
strict threshold in the voxelization process.  
We dilate our final images in the 
background subtraction process, which 
lessens holes yet creates a less accurate 
figure.  The voxel acquisition process then 
cuts down the thick figure to a more 
accurate shape in the 3D reconstruction. 
 



 

 
 

 
 

Figure 3: Voxel Reconstructions 
 
 
6   Results 
    The background subtraction algorithm in 
MATLAB ran at .78 frames/s for 2 cameras.  

The partial voxel acquisition took about .71 
frames/s for 2 cameras.  The total frame rate 
for the entire system in MATLAB was about 
.36 frames/s. 
     The background subtraction algorithm 
ran at close to 2 frames/s for 2 cameras 
when implemented in C.  The voxel  
representation was not able to be fully 
implemented in C due to time constraints, so 
it is not certain what speed the entire system  
ran at using C. 
 
7   Discussion 
     Our algorithm can deal with indoor, 
stationary environments that are cluttered.  It 
effectively removes noise that is brought 
upon by the image acquisition process.  It 
also is efficient in removing shadows caused 
by diffused lighting, such as the lighting that 
would be found in labs that have multiple 
light sources.  The algorithm has difficulties 
dealing with sharp shadows caused by a 
single light source.   
     The voxel acquisition process was 
accurate but not perfect.  Problems still 
arose due to the dilation of the images in the 
background subtraction phase of the system.   
This is acceptable, though, since we were 
trying to build a close to real time system 
and therefore sacrificed some accuracy for 
speed.   
     The original intention of the system was 
to create an initial rough voxel model to use 
as feedback to the system.  The feedback 
would be used to adjust thresholds in the 
background subtraction process and 
therefore make sharper silhouettes for more 
accurate voxel representations.  Obviously, 
this would be very difficult to do in real 
time, but it could certainly be an effective 
method at obtaining very accurate voxel 
reconstructions.   
     Unfortunately, the complete system was 
not able to be completed using the C 
language.  Problems arose in using the 
OpenCV library functions when trying to 
convert the voxel algorithm from MATLAB 
to C.  The background subtraction algorithm 



was also not as fast as expected.  The clean 
images it produces, however, are a good 
sign that it may be possible in the future to 
reduce some computations in the algorithm 
and still obtain accurate silhouettes.  Better 
experience with the OpenCV library will 
also go a long way in making the algorithm 
faster.   
 
8   Conclusion 
     Overall, there were a few complications 
that arose in debugging and creating the 
system.  Only being able to test a system in 
theory was a drawback, since it isn't possible 
to be sure that everything in a system will 
work together as planned until you test it.      
It was also difficult to complete the entire 
system in the allotted time for the MERIT 
program.  Speeding up of the algorithms was 
not able to occur in time, so the results are 
based on programs that are not as fast as 
they could be.   
     From the accurate images produced by 
the algorithms it seems like the approach 
that is taken is a good start to building a 
better and faster system.  What is needed is a 
refinement of the system so that all of its 
parts work together better so that it runs 
faster.  A better understanding of the 
OpenCV library and coding in C would help 
this greatly, and lead to a more efficient 
system.          
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Appendix A 
 

 
 

 
Figure 4a: Camera 1 

 
 
 
 
 
 

 



 

 
Figure 4b: Camera 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
         


