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Abstract 
 

Most currently-used methods for modeling nonlinear propagation in fiber optic do not 

account for the evolution of the polarization state.  A software model has been 

developed that accounts for the variations in polarization via a numerical approximation 

and predicts the behavior of a system with different input polarization states.  The model 

uses two methods, an approximation and an exact equation, which have each been 

derived from the nonlinear Schrödinger equation.  The approximation closely agrees with 

experimental data in which the polarization state frequently changes compared to the 

length of the fiber.  The exact method is free of this constraint but takes longer to 

simulate.  The software tool developed for this project will help to better understand 

experimental observations of polarization dependence, and will help in designing 

nonlinear optical switches that are insensitive to polarization. 
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Introduction 
 

Despite other software models that focus only on specific linear polarization of signal, 

software developed in this research takes account of most general cases of polarization 

while giving efficient solution to nonlinear property of fiber optic. This software is able to 

simulate polarization dependence of different optical fiber effects. 

 

Polarization Dependence Loss 

 
In optical communication it is critical be aware of power loss inside a fiber.  Measuring 

power loss determines how much signal has been attenuated during transmission. If L is 

length of fiber and P is amount of initial power then power loss can be calculated from 

equation below: 

 
L

T PeP α−=      (1) 

 

Where alpha is attenuation constant and its unit is in dB/Km. The relationship between 

loss and signal power also can be explained as following 

 

αα 343.4)log(10
=−=

P
P

L
T

dB     (2) 

 

In some cases, fiber loss depends upon polarization state of signal. As a result, any 

changes in polarization states will change the signal power along the fiber.  In a same 

manner, based on optical component, loss can depend on wavelength. The software 

model perfectly simulates both polarization- and wavelength-dependent loss. 

 

Group Velocity Dispersion (GVD) 

 
Before getting into the subject of group velocity dispersion, it is convenient to talk about 

basic concepts of group velocity and phase velocity. Phase velocity is the velocity at 
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which phase of one wave propagates; for example,  
n
cV =  is phase velocity of wave, 

where c represents speed of light in a vacuum and n is refractive index. On the other 

hand, group velocity is the rate at which the amplitude of group of propagating wave 

changes. Simply, phase velocity is speed at which the phase fronts propagate and group 

velocity is speed of the envelope (wave packet). The relation between phase velocity 

and group velocity ( gv )  can be expressed as followed 

 

1)( −−=
λ

λ
d
dnncvg         (3) 

 

Generally speaking, approximation to linear propagation in optical fiber and dispersion 

can be explained by Taylor expansion: 

 

2
02010 )(

2
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Where Beta is Propagation constant and is related to refractive index of fiber.  The 

equation for linear propagation is as follow 

 

2

2

210 2 dt
Adj

dt
dAAj

dz
dA βββ +−−=          (5) 

 

Where 0β  is the propagation constant, which is related to the phase velocity, whereas 

1β  and 2β  are constant related to group velocity and dispersion respectively. By using 

the formula above, it can be seen that in process of linear propagation, while wave 

envelop is propagating along fiber dispersion parameter, 2β , will cause the signal to 

spread gradually, which is referred to as Group Velocity Dispersion (GVD). The group 

velocity constant, 1β , can depend on the polarization states, which leads to an effect 

called Polarization Mode Dispersion (PMD). 
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Polarization Mode Dispersion (PMD) 

 
As mentioned before, in study of optical fiber, it is desirable to assume that fiber is 

perfect (polarization-maintaining fiber). However in reality, fiber contains impurities due 

to the non-ideal asymmetries in the core, mechanical stress such as bending or twisting 

and environmental temperature. These effects, though in small magnitude, can change 

the polarization of the wave inside the fiber.  

 

 
Figure 1: In a birefringent optical fiber, a polarized wave resolves into two orthogonal 

states that travel with the different speed 

 

Under such condition, propagation constant (Beta) of each polarization states will be 

different and as a consequence of this modal birefringence, the polarization state will 

periodically change inside the fiber over a distance called the beat length: 

  

yx
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π
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           (6) 

 

Because each axis has its own propagation constant, their group velocity will be different 

(categorized to slow and fast axis based on their speed). The process in which the 

difference between speeds of states will cause the signal broadening and time delay is 

called Polarization Mode Dispersion. So, polarization dependence of birefringence is 

called PMD, while wavelength dependence of birefringence is Chromatic Dispersion.  In 

case of Chromatic Dispersion speed of propagation will vary with wavelength.  
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Nonlinear Characteristics of Fiber Optics 

 

Nonlinearity in optical fiber happens when pulse intensity leads to modulation of 

refractive index. This phenomenon is called Kerr Effect, which is composed of self-phase 

and cross-phase modulation.  

 

Self-Phase and Cross-Phase modulation  

  

In case of self-phase modulation, the propagating signal will modulate itself. This effect 

happens especially when pulse intensity is short enough, which will cause changes in 

the refractive index. This deviation will cause varying speeds of propagation creating a 

phase shift. 

 

 
Figure 2:  Under effect of self phase modulation, propagating pulse (top) experiences a 

phase shift (bottom). 

 

Similar to self-phase modulation, cross-phase modulation occurs when more than one 

signal is propagating inside the fiber. In addition to changing their own speed, a signal 

will affect the speed of other signals on the optical fiber that are propagating close to 

them and cause phase modulation. 
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Method 

 

The evolution of pulse propagation in optical fiber is commonly split into linear and 

nonlinear equations.  Considering only the linear effects it can be modeled by Equation 

(7).  In the equation Â represents the Fourier transform of the optical signal.  The pulse 

shape at any point along the fiber can be obtained from the solution, which is 

represented by Equation (8).  Thus, the linear effects are only seen in the phase of the 

spectrum or the magnitude of the time domain. 
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Considering only the nonlinear terms pulse propagation results in Equation (9).  Gamma, 

the nonlinearity coefficient, is described in Equation (10).  The solution (Eq. 11) to the 

nonlinear term is obtained in the time domain. 
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To model the Nonlinear Schrödinger Equation (NLS)  

 

AAj
dt

AdjA
dz
dA 2
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222
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we used the Split-step Fourier method.  This method divides the optical fiber into many 

small chunks of equal size.  Furthermore each chunk is split in half and a zero length 

slice is inserted in-between the halves.  Each half represents one half of the linear 

effects of the chunk, and the slice represents the nonlinear effects.  Thus, the linear 

halves and the nonlinear slice can be solved separately. 

 

We implemented the Symmetrized Split-Step Method, which iterates over the nonlinear 

slice and the second linear half till it converges below a tolerance.  This method prevents 

the grouping of the nonlinearity and has an error on the magnitude of dz3 compared to 

the Conventional Split-Step Method error of dz2. 

 

The NLS equation for modeling pulse propagation assumes light is linearly polarized to 

an axis or scalar as we like to call it.  To take into account the polarization of light we 

started with the coupled-mode NLS equations that appear in Agrawal’s Nonlinear Fiber 

Optics.  These equations are 
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where Δβ is β0X - β0Y. Instead of Δβ, we use an effective phase velocity that is the 

difference between the actual phase velocity of the axis and the average phase velocity 

of both axes.  The same procedure was done for the group velocities.   

 

The last term in Equations (13, 14) can be assumed to be zero when the fiber length is 

much greater than the beat length or the polarization state frequently changes compared 

to the length of the fiber.  This assumption greatly simplifies the calculations to model 
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pulse propagation.  This approximation does not need to be made, if a rotation is made 

to a circular coordinate system. 

 

 

Elliptical Birefringence 

 

All the previous propagation equations have only considered linear birefringent optical 

fibers.  However, this is not always the case; the eigenstates of the fiber could be 

elliptically polarized.  Two variables, χ and ψ, are needed to entirely describe the 

birefringence polarization.  χ is the degree of ellipticity and ψ is the angular orientation of 

the ellipse relative to the x-axis.  A visual representation is shown in Figure 3 below: 

 

 
Figure 3: Elliptical Birefringence Parameters 

 

 

Approximate Method Using Eigenstates of the Fiber 
 
One of the two available methods of modeling the NLS equations available is the 

approximation of Equations (13, 14) using the eigenstates of the fiber.  This method is 

referred to as "elliptical" throughout the remainder of paper.  In our model we assume 

that the input vectors are the electric fields corresponding to the original x-y axes; thus, 

we must rotate to orthogonal eigenstates, ua and ub, of the birefringent fiber using 
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We will now consider the linear and nonlinear propagation equations separately due to 

its application to the Split-Step Fourier Method.  The linear propagation including the 

rapid oscillations of polarization approximation in terms of the new coordinate system is 
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where ha and hb are 
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The nonlinear propagation can be calculated by: 
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where the (…) terms are additional nonlinear terms that average to zero in the case of 

high birefringence.  After the Split-Step iterations are done, the model must rotate back 

to the original x-y axes using 
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Exact Method Using Circular Basis 
 
The second method available in the model is the circular basis of Equations (13, 14).  

The input orientation is the same as the approximate method (x-y axes).  The rotation to 

the circular coordinate system is made by: 
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where u+ represents the left-hand circularly-polarized component and u- represents the 

right-hand circularly-polarized component.  This rotation is the special case of the 

rotation in Eq. (15) when χ=π/4 and ψ=0.  The linear propagation in the circular basis 

including elliptical birefringence follows: 
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where hmn are define as: 
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The nonlinear propagation equations in the circular basis are 
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After the Split-Step iterations are finished a rotation must be made from the circular 

basis to the x-y axes using 
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MATLAB Model 
 
The model was written as a MATLAB function that included both methods, elliptical and 

circular, of solving the NLS equation.  The function encompasses all rotations and  

Input Parameters: 

u0x, u0y  Starting field amplitude 

dt  Time step 

dz Propagation step size 

nz  Number of steps to take (i.e. ztotal = dz*nz 

alphaa, alphab  Power loss coefficients for the two fiber eigenstates 

betapa, betapb  Dispersion polynomial coefs, [beta_0 ... beta_m] for 

the two eigenstates 

gamma  Nonlinearity coefficient 

pol = [chi,psi]  Polarization state of the primary fiber eigenstate 

(default = [0,0]) 

method  Which method to use, either ’circular’ or 

’elliptical’ (default = ’elliptical’) 

maxiter  Max number of iterations per step (default = 4) 

tol  Convergence tolerance (default = 1e-5) 

Output Parameters: 

u1x, u1y  Output field amplitudes 

 

 

The starting and output electric fields are vectors of any length that describe the slowly 

varying waveforms. The input and output are in the x-y basis and can be polarized to 

any state.   

 

The pol parameter describes the birefringence of the fiber via χ and ψ, which 

correspond to the eigenstates of the fiber.  See Figure 3 for a visual description.  

Alphaa,b and betapa,b represent the power attenuation constant and the propagation 

constant respectively.  These parameters are aligned with the eigenstates of the fiber.  

They can be declared as a vector of Taylor Series coefficients or as a vector the same 

length as u0x.  If their length is less than u0x, then the model will automatically calculate 
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the corresponding approximation of α(ω) and β(ω).  If alphaa,b and betapa,b are the 

same length as u0x, then they will be directly interpreted as α(ω) and β(ω). 

 

The last four input parameters (pol, method, maxiter, and tol) are all optional.  

To specify one of the last four parameters, the optional parameters above must also be 

specified.  For example, to declare maxiter you must declare pol and method.  If pol 

is not specified, then it will be assumed the birefringence is aligned with the x-y axes.  

The default method is elliptical. 

 

The dimensions of the input and output quantities are arbitrary, as long as they are self 

consistent. For example, if |u0x|2 has dimensions of Watts and dz has dimensions of 

meters, then the nonlinearity parameter, gamma, should be specified in W-1m-1. Similarly, 

if dt is given in picoseconds, and dz is given in meters, then the dispersion polynomial 

betap(n) should have dimensions of ps(n-1)/m. 

 

 

C Model 

 

The model was also developed in the C programming language to increase the speed of 

simulation.  The C version has the same exact input and output parameters as the 

MATLAB version.  C is at a lower level of abstraction than MATLAB so it provides control 

of data storage and movement.  MATLAB stores matrices columnwise whereas C stores 

matrices horizontalwise.  The storage method is important, because the model requires 

heavy fft and ifft calculations.  These calculations are done using the FFTW library, 

which stores matrices horizontalwise.  Therefore, MATLAB must continuously convert its 

matrices back and forth between the two storage conventions.  Implementing the C 

version will only require this conversion for the initial function call and for the return 

vectors. 

 

FFTW must make a plan for each fft and ifft with different lengths, input vectors or output 

vectors.  This plan is a run-time analysis of the current computer's architecture and is an 

attempt to optimize FTTW's performance.  The C version of the model has the ability to 

save and load the necessary plans. 



14 

Results 
 

We verified the accuracy of our model by testing it against an earlier, scalar version of 

the code and known soliton solutions.  We also compared our model to experimental 

data of cross-phase modulation in Bismuth-Oxide-Based highly nonlinear fiber.  

Additionally we ran benchmark tests to analyze the run-time speeds of the different 

versions and methods. 

 

Linear Verification 

 

To ensure that the model was correct in only linear simulations we compared our output 

to the output of the scalar version, which can only handle linearly polarized inputs.  To 

mimic the scalar model we set the characteristics of the eigenstates of the optical fiber 

equal to one another; thus the input polarization state should not affect the output.  The 

parameters of the simulation were: 
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where AX and AY are their respective element from the Jones Vector that describes 

polarization.  Multiple polarization states of linear, circular, and elliptical were tested 

along with each method, elliptical and circular.  This simulation was done with a single 

step, nz = 1, since there is no nonlinearity.  The result of this simulation for both the 

scalar version and our model for any polarization state or method was 
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Figure 4: Linear verification for all polarization states and methods 

 

Nonlinear Verification 

 

To confirm the accuracy of the nonlinear workings of our model, we tested a known 

soliton solution.  A soliton is a special case when the dispersion and nonlinearity cancel 

one another resulting in the output equal to the input.  The parameters were 
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This test case required multiple steps in order for the steps to converge.  The output for 

all polarization states using the circular method and linear polarization to one axis using 

the elliptical method was 

 

 

 
Figure 5: Nonlinear verification for all polarizations for the circular method and linearly 

polarized to one axis for the elliptical method 

 

It is significant to note that to produce the soliton solution in the case of circularly 

polarized using the circular method we set gamma equal to three halves.  This is 

expected since its nonlinearity factor is weaker by two thirds. 

 

The elliptical method did not produce the soliton solution for polarization states that were 

not linearly polarized to the x- or y-axis.  The output for these cases was 
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Figure 6: Nonlinear verification of polarizations not aligned with an axis using the 

elliptical method 

 

The output pulse was broader than the input; thus, not a correct soliton solution. 

 

Experimental Comparison 

We compared our model to experimental data of cross-phase modulation in Bismuth-

Oxide-Based highly nonlinear fiber.  The experimental data was from earlier experiments 

conducted at the University of Maryland.  The experiment involved optically modulating a 

data signal by a clock signal.  The output of interest is the filtered data signal and it is 

what we will examine.   The parameters of our model were setup to exactly match those 

used in the experiment.  The following is the filtered output comparison of the 

experimental data and our model using the circular method: 
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Figure 7: Experimental data versus simulated circular method 

 

The comparison of the filtered output of the experimental data and our model using the 

elliptical method is 

 

 
Figure 8: Experimental data versus simulated elliptical method 
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Benchmark Tests 

Run-time benchmark tests were ran to measure the speed difference between the 

different versions and methods.  The test setup was one signal from the cross-phase 

modulation experiment.  The time measurement was from the CPU time before and after 

the simulation according to MATLAB.  The benchmark graph in which the number of 

steps was two hundred for all versions and methods is 

 

Matlab

Matlab

C

C

0 1 2 3 4 5 6 7 8 9

CPU Time 

Circular 
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Elliptical 
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Benchmark Results

 
Figure 9: Benchmark results with equal number of steps between methods 

 

Additional tests were run in which the number of steps used in the circular method was 

two hundred and in the elliptical method was sixty.  The output between the two methods 

was no different than when the same number of steps was used.  The results of this test 

are 
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Figure 10: Benchmark results with fewer steps in the elliptical method 
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Discussion 
 

The linear verification tests show that both methods in our model exactly match the 

scalar model.  It is also shown that if there is no nonlinearity, then the entire fiber can be 

simulated in one step.  This is expected since we are using a known solution for the 

linear part and the steps are only needed to approximate the nonlinearity. 

 

The nonlinear verification tests did not produce the same results for the circular and 

elliptical methods.  The circular method generates the precise soliton solution for any 

input polarization.  The elliptical method will only correctly simulate the test when the 

input is polarized to either the x- or y-axis.  If the input is any other polarization state, 

then an error is introduced.  This error is due to the approximation of Equations (13, 14) 

in which the last term was ignored.  The basis of this approximation is that the rapid 

polarization oscillations will cause the term to average to zero.  In other words if the 

length of the fiber is much greater than the beat length, then it is a valid approximation.  

In our soliton test case, the beat length is infinite since there is no birefringence.  The 

fiber length of π/2 is most definitely smaller than infinity, which explains why in this case 

the elliptical method should not produce accurate results. 

 

The comparison of the cross-phase modulation experimental data and our model show 

an excellent match between theory and experiment.  This is a particularly thorough test 

of our model since it employs most of the effects that are included in the model.  Both 

methods, circular and elliptical, closely follow the experimental data.  Also the circular 

and elliptical methods are almost exact replicas of each other proving that the elliptical 

approximation is useful and valid.   

 

The benchmark tests prove that our work in coding a C version of the model was not 

futile.  In the tests with equal number of steps the C version runs 65 – 80% faster than 

the MATLAB version.  If we take advantage of the elliptical approximation and reduce 

the number of steps, then the elliptical version’s speed is increased by 62%.  Most 

impressively the elliptical C version is 93% faster than the circular MATLAB version. 
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Conclusion 
 

We have succeeded in creating a general purpose software model that simulates 

polarization evolution in nonlinear fiber optics.  Our model is versatile and will assist in a 

wide range of fiber optic research areas.  It allows for hundreds of permutations of 

variables to be simulated in minutes that would take days to reproduce in the lab.  In 

particular we know that it will be helpful in finding polarization insensitive optical 

switches.  Optical switches are needed to remove the delay in converting from light to 

electricity and back.  Polarization insensitive switches will eliminate the need to maintain 

the polarization throughout the entire fiber. 

 

Our model with be free and publicly available under the GNU Public License.  People 

around the world already use the scalar version of the code, and there is a known 

demand for the full-vector version.  The model will also be useful in learning 

environments. 
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