

Intelligent Cooperative Ad-Hoc Mesh Networks

Alexander Weissman, Waseem Malik

Ahmed Sadek, Wei Yu, and Professor K.J. Ray Liu {alexw; wmalik; aksadek; weiyu; kjrliu} @umd.edu

Introduction

- Design an intelligent, cooperative wireless mesh network protocol
- Measure transmission efficacy in a variety of environments for both directand cooperative- network protocols
- Determine optimal relay positioning for the cooperative protocol
- Analyze power efficiency for both protocols

Power Efficiency

Set base to source distance (250 ft.)
Fix relay at the theoretical optimal position in the center (125 ft.)
Vary power levels from -20 dBm to 5 dBm (0 dBm = 1 mW)

x(t): signal sent from source or relay y(t): signal received at base or relay a_i(t): channel fading coefficient τ_i : channel delay $\xi(t)$: additive noise

Parking Lot 6 (Comcast Garage), University of Maryland, College Park

Temporal Locality

Conditional probability modeling using two-state Markov chain

High values for P₀₁₀ and P₁₁₁ indicate bursting behavior, low values indicate transitions

Paint Branch Trail, University of Maryland, College Park

Packet Loss over Time

Conclusions

- The relay position for which packet loss is minimized is at the exact middle between the source and the base
- Diversity 1 packet loss is observed with direct transmission of packets over varying power levels; diversity 2 observed with cooperative transmission
- Small variations in relay placement greatly affect quality of service (QoS)
- Packet loss occurs fairly randomly when loss is high (~40%+)