

Nonlinear MZI as a DPSK Signal Regenerator for Optical Communications

Chad Ropp Dr. Julius Goldhar MERIT 2006 (UMCP)

Questions to be answered

- What is differential phase-shift keying (DPSK)?
- How does a nonlinear Mach-Zehnder interferometer (MZI) work?
- How can a nonlinear MZI be used for DPSK regeneration?
- What kinds of nonlinear media provide good regeneration?

DPSK is an optical modulation scheme that encodes data in phase changes

DPSK signals are affected by both phase and amplitude noise

In the linear MZI signal inputs are mixed and then separated back out

Interference from nonlinear media unbalance the MZI causing it to act like a switch

The Output...

- is a combination of the signal and the pump
- depends on input intensity and phase

Computer simulation indicates that in saturation both phase and amplitude noise can be reduced

Phase-sensitive amplifier going into saturation

Modeling shows how well different nonlinear media perform in a regenerator

- A computer model was developed for the simulation of MZI-based all optical regeneration
- Regeneration using different nonlinear media in the MZI was compared
- All nonlinear media considered could provide phase-only regeneration
- The saturable absorber cleaned up both phase and amplitude noise better than any of the other three nonlinear media