

BioLab-On-A-Chip

Eric Chen, Harneet Khurana Marc Dandin, Alfred Haas, Nicole Nelson, Somashekar Prakash, Pamela Abshire

Goals

- Replace Cell-Biology Lab Infrastructure
- Explore Applications
 - Electrophysiology
 - Monitoring of Cells
 - MEMS (Micro-Electro-Mechanical Systems)

Highlights

- Cell Culture and Data Acquisition
- Packaging
- Sensor Design

Cell Culture and Data Acquisition

1. Cell Culture

- Incubate at 37°C, 5% CO₂
- Subculture at 60-80% confluence

2. Setup

- Place cells and media into chip well
- Mount chip onto test board within Faraday cage
- Place shielded setup inside incubator

3. Data Acquisition

- Acquire with legacy software using MathWorks Data Acquisition Toolbox
- Test with NI-DAQmx Tools for live monitoring

Packaging

mmmm **SU-8 Packaging Process UV** source Masking & **Coating SU-8** Exposing UV SU-8 PR Si Wafer **Development** Encapsulation Packaging & Bonding Encapsulation Bond Wire **Ceramic Packaging**

Previous Design

- 40-pin DIP Package
- Electroless Plating (Au)
 - Corrosion free
 - Low noise
 - ✤ More surface area

Problems

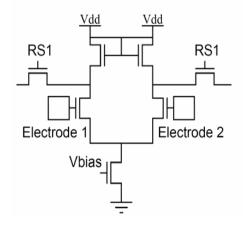
- Aqueous absorption
- Loctite[™] 3340 fails to promote cell growth

Selected Solution

- Place SU-8 perimeter
- Backflow encapsulating material

Sensor Design

BioLab-On-A-Chip


10 128 x 128 **Electrodes Electrodes** ~ X 1600 888888

Tape-Out of Nine Chips

- Use of 2 and 3 Metal Processes for Window Cut
 Patterning
- Various In-Pixel Pre-Amplification Configurations

Highlights

- High Spatial Resolution
- 128 x 128 Array of Electrodes per Chip
- Neurite Outgrowth Monitoring

