Comparison of Acoustic Parameters and MFCCs for Speaker Identification

Alec Colvin Srikanth Vishnubhotla Daniel Garcia-Romero Advisor : Prof. Carol Y Espy-Wilson

Contents

MFCCs: Mel Frequency Cepstral Coefficients

Feature Extraction

- MFCCs
- Voice Quality
- Formants

Motivation and Design

Results & Future Work

Mel Frequency Bands for Part of a Sentence of the Buckeye Corpus

MFCCs quantify the relative energy in different frequency bands and project it into a DCT basis. Above: a comparison of the energy distribution in the wide-band spectrogram and Mel-frequency bands.

Figure taken from Klatt & Klatt, 1990

- They describe the shape of the vocal tract.
- They don't vary considerably with the voice quality.

Contents

Feature Extraction

- MFCCs

- Voice Quality

- Formants

Motivation and Design

Results & Future Work

Motivation and Design

- There are 8 acoustical parameters (APs):
 - 1. The 4 formants
 - 2. The 2 energies: periodic and aperiodic
 - 3. H1-H2
 - 4. The Spectral Slope
- They were compared against the MFCCs last year and did well.
- Old Database: NIST '98 Evaluation Database
 - Problem: telephone filtered speech (200 Hz 3400 Hz), which invalidated H1-H2
- New Database: Buckeye Corpus, from Ohio State University
 - Integrity of the low frequency information has not been distorted

Contents

Feature Extraction

- MFCCs
- Voice Quality
- Formants

Motivation and Design

Results & Future Work

Results

% Accuracy	Male	Female
60 MFCCs	99.67	100.00
7 APs (no H1-H2)	95.72	99.23
8 APs	94.17	98.21

- H1-H2 hindered overall performance.
- Overall performance of the APs was comparable to the MFCCs.

Future Work

- We should improve creakiness detection to improve H1-H2.
- We should improve harmonic detection.

