

1 of 11

Lightweight On-Chip Decoder Design for
 Information Hiding in Compiled Programs

Malcolm Taylor

University of Maryland Baltimore County

Dr. Min Wu
Dr. Gang Qu

Faculty Advisors

Department of Electrical & Computer Engineering

University of Maryland-College Park

Communication and Signal Processing Laboratory

Abstract

The importance of trusted computing has become more prevalent due to
the amount of increasing computer security threats. As this trend continues,
there has become a push for modifying the underlying architectural base of a
computer to directly aide in the creation of a secure computing environment.
Early work has shown that it is possible to hide information at the instruction
set level and use the extracted data for security and authentication purpose.
The goal of this project is to conduct a proof-of-concept design to validate this
approach. Specifically, we have designed and simulated a small footprint chip
add-on that can extract the hidden information and remap the instructions
back to the original form for seamless architectural integration. The FPGA
based prototype shows that the design requires about 0.2% hardware of a
modern single core processor and drains only 0.07% of its power. We are
currently looking at further changes to improve the speed of the design.

2 of 11

1 Introduction

1.1 Background
The instruction Set Architecture (ISA) of a processor dictates the final form

in which a compiled computer program takes for interpretation by the cpu. This
allows high-level computer languages to be abstracted to a much smaller
predetermined set of instructions that can be fed to the CPU. With this level of
abstraction in place the ability to generate multiplatform code becomes much
easier. An instruction set comprising of fixed width instructions is one of the
key aspects in Reduced Instruction Set Computing (RISC) architecture principles.
RISC is a commonly used architecture because it allows quicker processing due
to its fixed width instructions. Along with these performance gains comes
minimal ability to modify or encode data to add side information. Because many
of today’s high-performance processors are striving for security gains, this
strict architecture limits the possible ways in which a software/hardware
security implementation can be instantiated.

1.2 Prior Research
In the past it has been shown that there is slight flexibility to embed

information in instructions to aide in security. Recent research by Swaminathan
et al.1 looked further into the possibility of data hiding in a fixed framework
such as RISC. The emphasis of the research focused on evaluating the feasibility
of encoding extra data into the 26-bit operand of an instruction on the RISC
architecture. It was determined that by remapping bit positions to smaller bit
spaces, hidden information could be stored in the unused bits. Remapped bit
positions were found using search algorithms tailored to this type of data. This
lossless encoding scheme allows for full recovery of the original instruction
therefore no underlying change to the architecture is needed.

3 of 11

Figure 1: Encoding/Decoding Architecture

The diagram in figure 1 shows the framework proposed by Swaminathan

et al. (2005). In software, the instructions for a given compiled binary are first
broken into opcode and operand. The operand field of the instruction is much
larger, and therefore is the target of compression. The process of compressing
the data involves three different search algorithms that evaluate all of the bits
contained in each of the instruction’s operands and determine which positions
are the most optimal for remapping. By finding the individual combinations for
these positions a lookup table can be created that stores the original bit
combinations and the new streamlined mapping.

4 of 11

Figure 2:High Performance Trusted Processor

A high-performance trusted processor architecture has also been

proposed based on previously stated information hiding technique (see figure
2). In this approach, the hidden information, after being extracted by the on-
chip decoder, can be used to facilitate trustworthy computing by, for example,
checking the integrity, reliability, and authenticating the source of the code
before execution. Under such framework, it becomes critical to implement both
the decoder and the admission controller in hardware.

With this prior research in mind, the next step is to evaluate possible
implementation strategies. The diagram in figure 1 shows a proposed High-
Performance Trusted Processor framework. For this type of architecture to be
feasible the implementation must be transparent to the Central Processing Unit
(CPU). Even with this lossless encoding there must be a way to recover the
encoded data. The encoder can be implemented in a modified compiler that
does the remapping after creating the program. However, the decoder cannot
be implemented in software because there is no advantage to this and the
framework becomes a mirror of other common software solutions. To
circumvent this problem the decoder can be implemented in hardware and
perform the decoding inline with the CPU. Not only does this create a much
more secure architectural base, but it is also faster than a possible software
solution.

To complement the software side of the design, a hardware-based
decoder is created to reverse the encoding process. The software process
generates a lookup table and the positions of the remapped bits. These two

Conventional Proces sor

Security Related Information

High-Performance Trusted Processor

Light -weight Decoder

High Performance

CPU Pipeline

Admission Controller

Integrity, Reliability,

and Origin Check

Instruction

Cache

LUT

Pseudo Instructions

with Side Information

Performance Enhancing Information

Interrupt:

abnormally r eport,

system shutdown, …

Decoded Instruction

Side Information

Data

Extractor
LUT

Figure 2: Illustration of an envisioned fully integrated high -performance trusted processor.

5 of 11

sources of information alone are enough to attempt the reverse mapping
process and can be stored on the chip. Along with storing this information, the
hardware device must take in an already remapped operand, recover the secret
information, and remap the operand back to its original form for processing by
the CPU.

1.3 Goal

The goal of this project is to validate the concept of implementing
decoder in hardware. In addition to showing that the design is capable of
extracting the hidden information, we need to answer the following
fundamental questions: how much hardware will be required, how much power
it will consume, how flexible is the design, and can it keep pace with the
modern high-performance processors? We provide a design that meets these
requirements and simulate the design through FPGA based prototyping.

2 Challenges, Feasibility and Methods

In this section the challenges and possible design solutions for this type of
hardware prototyping are investigated. Also, addressed is the feasibility of
implementing such a design inline with already established architecture.

2.1 Challenges and Feasibility

Because of the complexity involved in abstraction of logic to a physical

gate based representation, many complications arise when implementing
algorithms in hardware. The goal is to determine the simplest design model
that can easily be transformed into purely sequential and combinational logic.
However, when implementing hardware-based solutions a large number of
constraints and parameters have to be evaluated. This is especially true when
designing a device that has to conform to an existing architecture, because
many parameters are dictated by previously created standards. Ideally, the
optimal design for this project will build off of existing high performance
computing architecture and not hinder performance in any way; therefore some
constraints must be addressed before proposing the design

2.1.1 Power
 Power consumption is an important parameter due to the limited power
availability on a modern high performance computer. With clock speeds
increasing, common single core processors can use up to 100W2 of power. Too
much power consumption would make the design of the chip less feasible to
implement and force the use of an external power supply. Additionally, the
inclusion of a power supply forces a much larger chip footprint.

6 of 11

2.1.2 Gate Count
 Another important parameter to minimize is gate count. Removal of
complex logic and the reuse of existing memory structures aids in the
transistor gate reduction. Within the architectural footprint, where a high-
performance processor resides, there is limited space and a larger chip size will
make implementation less feasible. Today’s current single core processors have
a transistor count of nearly 40 million3. The goal is to create a design that
dwarfs the CPU in gate count, therefore minimizing implementation issues
when moved to actual application in the given architecture

2.1.3 Gate Delay
 Minimized gate delay is important when working in the high-performance
processor domain. The processor is the fastest component in the architecture
and it is frequently waiting on data to be sent therefore, the goal is to create a
design that does not cause the CPU to wait longer. Performance loss will be
noticeable if the chip delays incoming operands by a large amount. As with the
other challenges, the best way to address this issue is by minimizing the design
complexity.

 Minimizing power, gate count and gate delay guarantees a proposed
design that is tailored for the target platform. It is important to address these
issues before the design process to frame the architectural limitations.

2.2 Design Methods

2.2.1 High Level Design

Operand

Decoder

26-bit: Data in

5-bit: Configuration

26-bit: Data out

10-bit: Hidden Information

Operand

Decoder

26-bit: Data in

5-bit: Configuration

26-bit: Data out

10-bit: Hidden Information

Figure 3: High level Design

After evaluating the decoding process specifics, a design consisting of 2
input buses and 2 output buses was formulated (see figure 3). These four buses
will allow full functionality yet minimize the amount of connections that need to
be made to the existing architecture. To accomplish this minimalist port
design, the data-in bus must be used for receiving information from the
encoding process and pass-through data. To accommodate this design, multi-
state logic must be used.

7 of 11

 The first operation state of the design is the configuration state where
the chip takes configuration information through the data-in bus. Enabling this
state is achieved by setting the input value of the configuration bus to a
nonzero number. The data-in bus takes three different types of configuration
settings while in this mode. The first is the Bit Remapping bit mask, in which 1s
are used to represent the bits that have been found to be the most optimal for
remapping. The second is the Secret Information bit mask. This bit mask
represents the bits that will be used for the information hiding. Rather than
determining these bits by evaluating the amount of mappings, to reduce
complexity, this information is retrieved from the encoding side of the design.
Finally, the data in bus takes information about the individual lookup table
values. These mappings are sent in sequentially according to the value that the
actual index maps back to. For example if 8 maps to the value 0 then it is the
first bit combination to be sent in.
 Using these configuration settings, the individual components of the
design are setup. After configuration, is the hardware device acts as a pass-
through for the input operand. The goal is to have seamless transition from the
data-in bus to the data-out bus with minimal delay.

2.2.2 Proposed Hardware Implementation

Figure 4-1: Configuration Mode

Figure 4-2: Pass-through mode

8 of 11

After evaluation of the proposed design goal a formal internal
architectural layout was constructed (see Figure 4-1 and 4-2). The architecture
is formed using the specified minimization parameters and the proposed high-
level design. Since this is a two state design there must be an architectural
setup for both states. Additionally, components that can work without clock
dependency in pass-through mode are needed because of the stringent timing
goals of the overarching architecture.

After a thorough evaluation of the decoding scheme, it is apparent that
processing such a dynamic input creates a complex problem. When retrieving
data in the lookup table, the actual table index can be pulled from anywhere in
the operand due to the 226 possible combinations of the Bit Remapping
Bitmask. This cannot be avoided because the bit positions of the remapped
bits are different depending on the combinations of instructions of the current
program.

To address this issue we determined that the use of a crossbar device
was necessary. A crossbar is a device that can map any input to one or multiple
outputs and can be configured multiple times in hardware. The crossbar will
interconnect the data in bus and the lookup table to create the address for data
retrieval. Additionally, another crossbar must be used to remap the outgoing
bits of the lookup table back to their original bit positions.

Finally, some of the inputs must pass directly through the hardware
device. To minimize the power dissipation these inputs need to be dynamically
mapped to the outputs. Facilitation of this is possible through a simple bit
selector component. This device is comprised of 26 2 to 1 bit multiplexers that
can be programmed individually, therefore if a bit is not remapped the input for
the given bit becomes the output. However, if the bit is remapped the output
bit is selected from the second crossbar device.

All of these components are configurable but also allow for pass-through
functionality. This is the type of design needed for the two-state architecture
that was initially proposed. Additionally none of the devices have clock
dependencies in pass through mode therefore this piece of hardware should
not create problems when integrated into existing high-speed processor
architecture.

2.2.3 Prototyping Platform
To test the proposed design a prototyping platform had to be selected. For

this a Field Programmable Gate Array (FPGA) would offer the most design
flexibility. An FPGA allows for a hardware design process that is similar to that
of a software design as it allows for multiple configurations and simple testing.

9 of 11

Figure 5: Opal KellyTM XEM3001v2

The specific FPGA chosen is the Opal KellyTM XEM3001v2, shown in figure 5

above. The XEM3001v2 is based around the XILINXTM Spartan 3 FPGA
architecture however; Opal KellyTM has added easy an easy to interface USB
connection. The ability to send data to the design through the USB protocol
allows for quick testing. Along with data input and output capabilities the USB
connection is also used to for FPGA configuration. To configure the FPGA,
Verilog HDL was used and synthesized to bit code in the XILINXTM Integrated
Software Environment (ISE).

3 Results
After implementing the design on the XEM3001v2 the next step involves

testing the hardware device with actual configuration and operand data.
Additionally, measurement of the design minimization parameters occurred to
determine if any design changes need to be made.

3.1 Operational Test
The original test was done within the XILINXTM ISE software through the use

of a logic simulator. These tests did not implement the USB functionality
therefore allowing uninhibited measurements of specific design parameters.
Also, simple configuration and pass-through data was used to determine if the
design worked as planned. These tests determined that the design successfully
could take in configuration input and remap incoming operands.

The next step involved interfacing the design with the USB port on the
Opal Kelly XEM3001v2. To test this actual implementation, a simple python
program was created utilizing functions from the provided Opal Kelly API.
Functions were created to reset, configure, and send data through the data-in
bus. The data out bus was monitored to determine if the design was correctly
processing the operands. With 100 percent success the hardware device was
able to store configuration information and decode the passed in operands.

10 of 11

3.2 Gate Count/Size
The gate count of the implemented design totaled 95,456, which is 56%

utilization of the Spartan 3 FPGA. This meets gate count minimization goals
because 95,000 gates is ~0.2% of a modern single core processor. Adjusting
the size of the lookup table, the amount of outputs on the first crossbar, and
the amount of inputs on the second crossbar will minimize the gate count
further however; these changes will adversely affect the ability to store hidden
information.

 The amount of gates is also directly related to component size. With this
knowledge, an estimation of the components dimensions can be determined.
The Spartan 3 FPGA used on the XEM3001v2 is packaged in a 456-ball fine-
pitch ball grid array of dimension 17x17 mm or 289 mm2. Assuming there is
56% utilization, a device of the size ~13x13 mm or ~162 mm2 with the same
underlying packaging could be created from the design. This is a very small
add-on and will fit into existing high performance architectures.

3.3 Gate Utilization
With this working design 50% of the gates are used for logic while the

other 50% is used for storage. These numbers are promising and illustrate that
the lookup table is sized correctly for the proposed device implementation.
Even with modifications to this design, this ratio will not change much due to
the interdependency between logic and storage size. If fewer outputs are used
on the first stage crossbar then the lookup table size will contain less values
and vice versa.

3.4 Power Consumption
To determine the power consumption of the design, the XILINXTM Xpower

program was used. Xpower can generate power statistics on a HDL described
hardware device using real world statistics and input specifications from the
user. The design sent to Xpower did not contain the USB interface because in
actual implementation this would not exist. After sending the data to XPower
statistics were generated.

With the setup and clock speeds stated earlier, Xpower reported an
average power consumption of 65 mW. This varies slightly depending on the
operand input at a given time. 65 mW is well within the target power
consumption goal and is only ~0.07% of a current single core processor.

11 of 11

3.5 Gate Delay
To determine the gate delay, the statistics generated by the logic

synthesizer was used. After synthesizing, a list of overall gate delay is
generated containing the worst case for the design. By evaluating this data,
there shows a possible worst case 30 ns delay. For the current tests this is fine
but for actual implementation and interface with a high-speed processor this
may be too large of a delay.

One of the main factors contributing to the delay is the lookup table.
Currently the table is implemented as an asynchronous read, synchronous write
block RAM. This is not the most efficient memory structure and in actual
implementation it would most likely be instantiated as a high-speed cache.
Actual fabrication of the design with this component would most likely remove
a large amount of the delay. Another option is attempting this design on a
speed optimized FPGA. XILINXTM produces a version of the Spartan 3 FPGA with
a higher speed grade and this would possibly minimize a large majority of
delay.

4 Conclusion
In this work we determined the feasibility of implementing lossless

encoding based decoding module in hardware while conforming to the
standards of the already existing architecture. Our design is able to easily
decode operands that have been encoded with the previously proposed lossless
scheme and should have minimal problems interfacing with a high-
performance processor. The design was also able to stay well within the
minimization parameter goals while still being fast, efficient and lightweight.
This research shows that a software/hardware co-design based security
solution can be implemented with minimal hardware while still fully supporting
the dynamic input generated by software encoding side of the framework.

1 A. Swaminathan, Y. Mao, M. Wu, and Krishnan Kailas: “Data Hiding in Compiled Program
Binaries for Enhancing Computer System Performance,” 7th International Information Hiding
Workshop (IHW), Barcelona, Spain, in Lecture Notes on Computer Science (LNCS), June 2005.
2 Intel Corporation, Intel Microprocessor Quick Referenc. Retrieved August 1, 2007, from Intel
Microprocessor Quick Referenc Web site:
http://www.intel.com/pressroom/kits/quickreffam.htm
3 Intel Corporation, Press Kit -- Moore's Law 40th Anniversary. Retrieved August 1, 2007, from
Moore's Law 40th Anniversary Web site:
http://www.intel.com/pressroom/kits/events/moores_law_40th/

