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    Abstract - Non-intrusive component forensics involves identifying algorithms and parameters of 
a device based on its output data alone. This project extends several of these techniques from 
standalone digital cameras to cell phone cameras. Methods used include estimating a device’s 
color interpolation coefficients and noise feature parameters. Robustness to post-camera 
operations such as digital zoom and JPEG compression is also examined. This research applies to 
law enforcement and intelligence operations in differentiating between camera-, scanner-, and 
computer-generated images and determining the brand/model of the device used to capture an 
image. Further, this research is useful in identifying image tampering and patent infringement.   
 

I. INTRODUCTION 
 
 Cell phones with embedded cameras and regular standalone digital cameras have become quite 
ubiquitous in today's society, and in some ways they are equally as controversial.  For example, it is 
possible and common for one to take a photo surreptitiously using a cell phone, seemingly talking or 
typing or reading a text message, while in actuality snapping a picture.  For many, this is viewed as an 
invasion of privacy and a risk to secure information, since the picture-taker may not have innocent 
intentions.  For precisely this reason, some countries, such as South Korea, have enacted laws requiring 
that cell phone cameras produce a sound when a picture is taken1.  In other ways, the widespread 
presence of cameras, especially cell phone cameras, has proved beneficial to society.  While it is 
common to carry a cell phone, it is far less common to carry a standard camera under normal 
circumstances, as the portability of cell phones is very convenient.  This can be helpful, for example, 
by allowing eyewitnesses of a crime to take pictures to provide evidence to authorities.  Recently, the 
cell phone video captured by a Virginia Tech student on April 26, 2007 allowed the world to view the 
aftermath of the tragic events there.  Figure 1 shows the expected continued growth in sales of 
standalone cameras and of cell phone cameras (which will soon top 1 billion per year), as well as 
scanners.  While the digital camera is often useful and convenient, a number of forensic issues are 
raised by the standalone camera and cell phone camera technologies. 
 

 
Figure 1. Projected growth of sales of imaging devices worldwide2 



 Non-intrusive component forensics aims to identify distinguishing features of an image 
acquisition device using its output data alone.  In this project, data regarding color interpolation 
coefficients and noise features are obtained from pictures from five different models of cell phones, 
five models of standalone cameras, and four models of scanners, in order to create a model for 
determining which type of device was used to capture a new image.  Once the device is known, these 
methods can be extended to determining which brand and model of device was used to capture the 
image. 
 The importance of applying non-intrusive component forensics to imaging devices is especially 
noteworthy in the detection of image tampering and in its benefits to law enforcement officials, as well 
as detecting possible patent infringement.  A common method of image tampering is known as the cut-
and-paste method, which involves putting together parts of two or more different pictures into one 
picture and passing it off as an original picture.  This is easily done using software, and if done well is 
not detectable just using one's eye.  The methods described in this paper are able to detect which parts 
of a tampered image were taken by which type of device and its brand and model, proving that the 
image is not an original.  There are several known instances of journalists doctoring photos before 
publication, a type of fraud which should ideally be detectable. In addition, the field of non-intrusive 
component forensics can be helpful to law enforcement, as in the event that a photo with sensitive 
information appears, it may be possible to ascertain the type and model of the acquiring device, and 
from there, get closer to knowing the original taker of the photo.  Patent infringement can be detected 
in the case that two devices are so similar that the images they produce have very similar extracted 
features.  In classifying these images, one device’s image could easily be classified as belonging to the 
other device, and a large enough incidence of this could point to patent infringement for one of the 
devices. 
 The paper is organized as follows. In Section II, we discuss how the image acquisition process 
differs in cell phone cameras, standalone cameras, and scanners.  In Section III, we describe the color 
interpolation coefficient and noise parameter estimation methods and how they are used to classify 
images by acquisition device and by the specific camera or scanner model.  Detailed simulation results 
and experiments are presented in Section IV and robustness to JPEG compression and digital zoom are 
examined in Section V.  Some comparisons with prior works are reported in Section VI and final 
conclusions are drawn in Section VII. 
 

 
II. IMAGE ACQUISITION PROCESS 

 
 Figure 2 shows the image acquisition process. The light from the scene passes through the lens 
and the optical filters and is finally recorded by an array of charge coupled device (CCD) detectors. 
Most scanners use tri-linear CCDs corresponding to red, green, and blue components (as shown in 

 

 
Figure 2. General image acquisition model for scanners and cameras 

 



Figure 3), while  digital cameras use a 2-D periodic CCD array, such as the well-known Bayer Color 
Filter Array (CFA) pattern shown in Figure 4 to sample the real-world scene. Using the tri-linear CCD 
array along with the line-by-line acquisition mode enabled by the motion system, scanners can directly 
capture all the three color components of each raster line. On the contrary, digital cameras use a square 
CCD array to capture the entire 2-D scene in one shot. Therefore, in standalone and cell phone 
cameras, only one color is obtained for each pixel. An image is captured in cameras through a lens and 
a two-dimensional CFA pattern.  The CFA pattern determines which color is obtained for a given pixel, 
and the Bayer CFA pattern is by far the most common. This Bayer pattern is a 2x2 square with one red, 
one blue, and two green pixels; there are twice as many green since luminance is detected best with 
green.  The 2x2 square is replicated many times to create an array representing the entire image.  The 
remaining two colors for any given pixel are estimated through an interpolation process, and in most 
cases the interpolation algorithm is unique to each model of camera.   
 
 
 
 
 
 

Figure 3. Tri-linear CFA pattern used in Scanners3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Bayer CFA pattern4 used in most digital standalone cameras and cell phone cameras 
 
 

Standalone digital cameras and scanners most commonly use a CCD (charge coupled device) 
sensor array to record the voltages generated by the light exposure corresponding to a particular color.  
Cell phones typically use CMOS image sensors for this purpose. CMOS sensors are cheaper, faster, and 
use much less power than their CCD counterparts, as they combine sensor and processing technologies 
onto one chip. However, CMOS sensors produce more noise than CCDs.   

After color interpolation, the interpolated images pass through a post-processing stage. This 
stage may include operations such as white-balancing, noise reduction, color correction, and JPEG 
compression. In standalone cameras, JPEG compression is performed with a quality factor close to 
100% to minimize information loss; however, cell phone cameras will often use lower quality by 
default, in order to keep file size smaller and preserve memory.  In the cameras studied, the cell phones 
used quality factors ranging from 65-85%. For this reason, as well as the extra noise from the CMOS 



image sensors, picture quality in cell phone pictures lags behind that of standalone cameras.  In 
addition, cell phone cameras typically produce much smaller pictures than standalone cameras (the 
most common size researched for this paper was 640x480 pixels or 0.3 megapixels). Therefore, 
forensic methods designed for standalone cameras cannot be directly used by cell phone cameras, and 
the creation of new methods that successfully include cell phone cameras is the focus of our work. 

  
III.  METHODOLOGY 

 
 An important goal of non-intrusive component forensics is to verify the authenticity of an image 
by tracing its origins and examining the possibility of tampering.  Acquisition forensics refers to the 
objective of determining if an image was captured by a camera, cell phone camera, scanner, or was 
computer generated.   This can be important for, as an example, verifying that a photo reportedly 
captured by a journalist or eyewitness actually originated from a camera and was not created using 
graphics software. Another forensics field, device identification forensics, aims to determine the brand 
and model of camera, cell phone, or scanner used to capture an image in question.  One application of 
this is to prove or disprove that each part of an image originates from the same model of camera, if one 
if looking for evidence of cut-and-paste tampering. 
 To create a successful identification scheme, one must first find sources of variation among 
different types of devices and between different models of a device. Once these differences are 
discovered, they can be extracted and represented as unique features of each device which can be used 
for identifying the source of an unknown new image.  The distinguishing features discussed in this 
paper are color interpolation coefficients3,5 and noise features6. Since each model of camera uses a 
different color interpolation method, this can be exploited forensically to help distinguish between 
various models.  The Bayer pattern is assumed, since in previous studies of digital cameras all cameras 
studied used this CFA pattern.  The CFA pattern tells which pixels are original and non-interpolated for 
each color.  The interpolated pixels can then be represented as a linear combination of the neighboring 
original pixels. The set of equations obtained in this way can be solved to find the estimated 
interpolation coefficients.  

Noise occurs when photoelectrons are created in the imaging device.  One example of 
measurable noise is dark signal non-uniformity, or variations between pixel voltage under conditions of 
no light.  Photo response non-uniformity can be measured as the variations between pixel voltage under 
light with fixed intensity.  There are also other small sources of noise within each device.  While the 
imaging device will attempt to compensate for and reduce noise in the image, some will still exist 
depending on the specific nature of the sensors and filters used.  In noise feature analysis, there are 
three components – denoising, wavelet, and neighborhood prediction.  In denoising, an image is 
denoised using four different algorithms, and for each one the difference between the original and the 
denoised image is measured. Next, wavelet analysis decomposes the image into frequency sub-bands to 
measure observe the effects of noise in the frequency domain. Lastly, the neighborhood prediction 
algorithm measures error in the prediction of neighboring pixels in smooth regions.6 

After features are obtained from sample images, the data are classified using a support vector 
machine (SVM) to identify the source type of the image (whether the image is scanned, camera 
captured, a cell phone picture, or a computer generated graphics image). In our experiments, we 
utilized a SVM with a non-linear radial basis function kernel.  A specified fraction of images ,usually 
85-99% of images, are used for training the SVM, with the remaining images used for testing.  In the 
testing process, the SVM classifies an image into the class into which it lies based on its noise and 
interpolation feature data and the training that has been completed previously. 

 
 
 



IV. SIMULATION RESULTS 
 

In this study, four models of scanners each with 96 sample images, five cell phone cameras 
models each with 100 images, five standalone cameras models each with 38 images, and 100 computer 
generated images were included.  Since this is a completely non-intrusive study, the sample images 
were taken in random conditions, without any controlled experimental setup.  In this way, the images 
should simulate real-world data in terms of lighting, color, texture, and subject.  Interpolation 
coefficient estimation and noise feature detection were run on each sample image, with the resulting 
data put into one large vector for each image.  In the first part of this study, 100 images from each type 
of device (cell phone camera, standalone camera, and scanner) were selected with an equal number 
from each model, and all CG images were used, to create four classes of 100 images each.  99 random 
images from each class were used to train the SVM classifier, which is known as the leave-one-out 
scheme.  The one remaining image from each class (4 images total) was used for testing.  This was 
repeated for 100 iterations.  The resulting confusion matrices from each iteration are averaged together 
to produce the final confusion matrix, shown below in Table 1.  The (i,j)th element in the table 
corresponds to the fraction of images from source type-i classified as belonging to source type-j. The 
main diagonal elements give the percentage of correct identification and the average of the main 
diagonal elements give the classification accuracy. From the results in Table 1, we find that overall 
identification accuracy is 93.75%, suggesting that the proposed features are good for identifying the 
source type. 

 
Table 1. Confusion matrix showing source device identification, with an overall accuracy of 93.75% 

 
Device Cell 

Phone
Standalone 
Camera 

Scanner CG 

Cell Phone  93% 2% 0 5% 
Standalone  1% 98% 1% 0 
Scanner 1% 3% 94% 2% 
CG 4% 2% 4% 90%

 
 Once an image’s source device has been determined, further classification can be performed on 
the particular brand or model of the device.   For scanners, it was found that using the combination of 
interpolation coefficients and noise feature parameters gave the best results. The confusion matrix for 
scanners is found in Table 2.  The four brands of scanners used were Epson, AcerScan, Canon, and 
MicroTek. 96 images from each scanner were used.  86 random images from each scanner were chosen 
for training, with the remaining 10 used for testing.  As seen in Table 2, the overall identification 
accuracy for scanner brand is 96.2%. 

 
Table 2. Confusion matrix showing scanner model identification, with an overall accuracy of 96.2% 

 
Scanner Epson AcerScan Canon MicroTek 
Epson 97.4% 2.6% 0 0 
AcerScan  4.2% 90% 4.4% 1.4% 
Canon 0 0 97.4% 2.6% 
MicroTek 0 0 0 100% 

 
 For both standalone cameras and cell phone cameras, using interpolation coefficients alone, 
rather than a combination of interpolation coefficients and noise features, produced the highest 



accuracy.  The five models of standalone cameras used were Canon A75, FujiFilm s3000, Casio QV-
ux2000, Minolta DiMage F100, and Canon PowerShot s410. 38 images from each camera were used, 
with 37 random images used for training and the one remaining image used for testing. Table 3 gives 
the results for identification of brand of standalone cameras, which produce an overall identification 
accuracy of 95%. These results are better than the ones reported in literature10,11  with average 
classification accuracies of 84% and 95%, respectively, over a smaller dataset of three camera brands. 
 

Table 3. Confusion matrix showing standalone camera model identification, with an overall accuracy of 95% 
 

Camera Canon A75 FujiFilm Casio Minolta Canon PowerShot 
Canon A75 98% 0 0 0 2% 
FujiFilm 0 100% 0 0 0 
Casio 0 0 100% 0 0 
Minolta 0.5% 2% 5% 87.5% 5% 
Canon PS 5% 0 0 5.5% 89.5% 

 
 The five models of cell phones cameras studied were Nokia 6102, Motorola V550, Samsung 
c417, Sony Ericsson w810, and Audiovox CDM-8910. 100 images from each cell phone were studied, 
of which 90 random images were used for training and the remaining 10 were used for testing. As with 
the standalone cameras, using interpolation features alone produced the highest accuracy results.  Table 
4 gives the results for identification of brand of cell phone camera, which produce an overall 
identification accuracy of 97.7% which is significantly better than state-of-the-art techniques that 
produce average accuracies close to 92% over four camera models from two different camera brands12. 

 
Table 4. Confusion matrix showing cell phone camera model identification, with an overall accuracy of 97.7% 

 
Cell Phone  Nokia Motorola Samsung Sony Audiovox 
Nokia 95.8% 0.4% 0 3.8% 0 
Motorola 2.8% 97.2% 0 0 0 
Samsung 1.2% 0 97.8% 0.2% 0.8% 
Sony 2.4% 0 0 97.6% 0 
Audiovox 0 0 0 0 100% 

 
 An interesting result is that scanner classification performs very well using interpolation 
features, even though scanners do not use color interpolation. Since scanners use tri-linear color filters 
at each pixel, each color is known at every pixel and no color estimation is required. Therefore, no 
patterns would be expected among the relationship between the color values of neighboring pixels. The 
reasons for these results are currently being investigated. The confusion matrix for classifying by 
scanner model using interpolation coefficients only is given in Table 5.   
 
Table 5. Confusion matrix showing scanner model identification, with 86 training images out of 96 total images, 

using color interpolation coefficient data only; overall accuracy is 92% 
 

Scanner Epson AcerScan Canon MicroTek 
Epson 99.2% 0 0.8% 0 
AcerScan  1.8% 89.8% 6.8% 1.6% 
Canon 2% 5.4% 90.4% 2.2% 
MicroTek 0.4% 6% 5.4% 88.2% 



V. ROBUSTNESS OF METHODS 
 

 In this section, we examine the robustness of the proposed techniques for post camera 
processing operations such as digital zoom and JPEG compression. As shown in the previous sections, 
using original, untampered images, the proposed methods used for classification work very well, with 
94-98% accuracy on average for device and model identification.  The methods were also tested on 
images that had undergone some kind of tampering, such as additional JPEG compression or 
resampling.  In these cases, we wish to be able to identify the originating device with high accuracy, 
even though the image has undergone post-processing operations.   
 Robustness to additional JPEG compression was tested on the cell phone camera images.  JPEG 
is a lossy compression method, meaning that the original image cannot be recovered exactly when 
decompressed.  A quality factor of 0-100 is associated with JPEG compression, with 100 meaning 
highest quality and therefore largest file size.  
 For our compression tests, four new groups of cell phone images were created using further 
JPEG compression with quality factors 90, 80, 70, and 60, respectively.  For each of these four groups, 
interpolation coefficient and noise feature data were collected, to be used in the SVM training and 
testing.  Since some data is lost during compression, it is expected that the original coefficient and 
noise parameters will be more difficult to detect as accurately, and that there will be less variation 
between images from different models of camera 90 images were used for training and 10 were used 
for testing, with 50 iterations for each classification.  
 In reviewing the results with JPEG compression with quality factor below 100, it was found that 
the best results came when only some of the features were used.  The Sequential Floating Forward 
Selection (SFFS) algorithm7 selects a subset of features that are most significant for classification.  The 
minimum redundancy-maximum relevance SFFS method was used to rank the combined noise and 
interpolation coefficient data so that only the most significant could be used. In the case of the 
compressed images, using only 88 of the original 516 features produced the highest accuracy.   To 
implement this, only those specific 88 features were used in the SVM training, and only those 88 
features were used for the testing images.  A possible explanation for why SFFS produces better results 
in classifying the compressed images but not the original images is that with the compressed images, 
some of the extracted features may have more redundancy than the original images because some of the 
original image data has been lost.  In addition, it should be noted that since using the SFFS-reduced 
feature set is more accurate only in identification of the extra-compressed images, but original images 
get highest accuracy using the full feature set, first a method must be used to determine that an image is 
JPEG compressed and not an original image.   
 Tables 6-9 show the identification results using the SFFS-reduced features set on the images 
compressed with quality factors of 90%, 80%, 70%, and 60%, respectively.   
 

Table 6. Confusion matrix showing cell phone camera identification, with 90% quality additional JPEG 
compression, producing an identification accuracy of 95.6% 

 
Cell Phone  Nokia Motorola Samsung Sony Audiovox 
Nokia 93.6% 2.6% 0.4% 2% 1.4% 
Motorola 3.2% 94.8% 0.2% 0.6% 1.2% 
Samsung 3% 1.4% 94.4% 0 1.2% 
Sony 2% 0.6% 0 96.4% 1% 
Audiovox 0 1.2% 0 0 98.8% 

 
 
 



Table 7. Confusion matrix showing cell phone camera identification, with 80% quality additional JPEG 
compression, producing an identification accuracy of 94.5% 

 
Cell Phone  Nokia Motorola Samsung Sony Audiovox 
Nokia 92% 3.2% 0.6% 2.8% 1.4% 
Motorola 4.2% 94% 0 0.6% 1.2% 
Samsung 1.4% 4.4% 93.6% 0 0.6% 
Sony 3.4% 0.6% 0 94.8% 1.2% 
Audiovox 0.6% 1.2% 0 0 98.2% 

 
Table 8. Confusion matrix showing cell phone camera identification, with 70% quality additional JPEG 

compression, producing an identification accuracy of 94.3% 
 

Cell Phone  Nokia Motorola Samsung Sony Audiovox 
Nokia 91.4% 2.8% 4% 0.8% 1% 
Motorola 4.4% 91.6% 0.2% 2% 1.8% 
Samsung 3.4% 0.8% 93.2% 1.6% 1% 
Sony 2.6% 0.8% 0 96% 0.6% 
Audiovox 0.2% 0.6% 0 0 99.2% 

 
Table 9. Confusion matrix showing cell phone camera identification, with 60% quality additional JPEG 

compression, producing an identification accuracy of 91.0% 
 

Cell Phone  Nokia Motorola Samsung Sony Audiovox 
Nokia 89.4% 4.8% 4.6% 1.2% 0 
Motorola 6.4% 89.8% 0.2% 2% 1.6% 
Samsung 2.4% 1.8% 94.8% 0.2% 1% 
Sony 2.4% 1% 0 96.6% 0 
Audiovox 0.8% 9% 0 5.6% 84.6% 

 
 Figure 5 demonstrates how as compression quality decreases, the rate of correct identification 
decreases.  However, the lowest accuracy achieved was 91%, which is still very good.  
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Figure 5. Graph of the overall identification accuracy for the four different compression quality factors tested on 

cell phone cameras. 



 Robustness of these methods to digital zoom is also an important and desired element.  
Depending on the level of zoom, a certain number of pixels are inserted between the original pixels, 
and interpolation is used to determine the color values of the new pixels.  Common methods of 
interpolation include bilinear, bicubic, and nearest-neighbor. This extra interpolation step makes the 
original interpolation coefficients very difficult to recover.  Therefore, classifying images that were 
altered with digital zoom yielded unimpressive results. However, classification of images that were 
upsampled using nearest neighbor interpolation by a factor x, then downsampled by a factor 1/x to 
produce an image with the same size as the original gave better results, as shown in the tables below.  
Table 10 shows the results with images upsampled by 1.25 then downsampled by 0.8, with an overall 
accuracy of 89.2%.  Table 11 shows the results with images upsampled by 2 then downsampled by 0.5, 
with an overall accuracy of 91.5%.  90 images were used in training, 10 images were used in testing, 
with 50 iterations averaged to create the confusion matrices. 
 

Table 10. Confusion matrix showing cell phone camera identification, with images upsampled by 1.25 then 
downsampled by 0.8; overall identification accuracy is 89.2% 

   
Cell Phone  Nokia Motorola Samsung Sony Audiovox 
Nokia 91.6% 2.6% 0.6% 3.8% 1.4% 
Motorola 4% 91.8% 0 2.8% 1.4% 
Samsung 4% 1.6% 92.6% 0.8% 1% 
Sony 9.8% 4.6% 0 84% 1.6% 
Audiovox 2.6% 4% 0 7.6% 85.8% 

 
Table 11. Confusion matrix showing cell phone camera identification, with images upsampled by 2 then 

downsampled by 0.5; overall identification accuracy is 91.5% 
   

Cell Phone  Nokia Motorola Samsung Sony Audiovox 
Nokia 93% 3.2% 0 2.4% 1.4% 
Motorola 0.8% 94.8% 0.2% 1.8% 2.4% 
Samsung 5.8% 2.6% 88.6% 1.8% 1.2% 
Sony 7.4% 1% 0 91.4% 0.2% 
Audiovox 3% 2.6% 0 4.8% 89.6% 

 
 To utilize the methods used in Tables 10 and 11, it must be known that the image has been 
altered by digital zoom, and the resampling factor must be known so that the zoom can be reversed. 
One method studied analyzes statistical correlations to detect resampling factors8.  However, there have 
been mixed results so far depending on the type of resampling used. 
 

VI. COMPARISON TO PREVIOUS STUDIES 
 

 To compare our results to other methods of feature extraction and classification, we classified 
images using the higher order statistical features scheme9.  This method was designed for detecting 
hidden messages in images, but can be extended to applications such as differentiation between brands 
of cameras. Tests were run using the original cell phone pictures and the cell phone pictures with 
additional JPEG compression. The results follow, using 90 images to train and 10 to test, 100 iterations, 
without using SFFS.  As shown in Table 11, our features perform better in classification of original cell 
phone images and images with additional JPEG compression. Tests have not yet been performed on the 
scanner or standalone camera images using higher order statistical features. 
 



Table 11. Comparison between classification of cell phone images using a combination of interpolation and 
noise features without SFFS and using higher order statistical features. The mean value for correct classification 

is given 
   

Quality Factor Interpolation/Noise HOSF 
100% 97.7% 85.6% 
90% 94.4% 81.4% 
80% 93.5% 77.4% 
70% 91.8% 73% 
60% 85.8% 68.8% 

 
 In previous work in [6] with identification of scanners using noise features and SVM 
classification, seven different models of scanners were tested using noise features only. In this case, 
there was a reported 95.6% success on average using the leave-one-out scenario.  In our tests using four 
models of scanners, there was a 95.4% success rate on average using only noise features, but a 96.2% 
success rate on average using a combination of noise features and interpolation coefficients. 
 There are no known previous studies of classification by type of device. 
 
 

VII. CONCLUSIONS 
 

Non-intrusive component forensics aims as identifying the algorithms and parameters of a 
device solely based on its output data. Previous work on non-intrusive forensics have focused mainly 
on such imaging devices as digital cameras and scanners and, in this project, we extend these forensic 
techniques to cell phone cameras. The color interpolation coefficients and the noise feature parameters 
are estimated from the images and are jointly used as features for forensic analysis. We show that the 
combined set of features can provide tell-tale clues and accurately help trace the origin of the input 
image to its production process and help identify the cell phone camera brand and model that was used 
in its capture as well as to differentiate between camera-, scanner-, and computer-generated images. 
Detailed simulation results with 5 cell phone cameras, 5 scanners and 4 digital cameras suggest that the 
proposed techniques are very efficient giving an overall accuracy above 94%. Further, the proposed 
techniques are also robust to post-processing operations such as digital zoom and JPEG compression. 
We believe that such analysis can be extended to applications in identifying patent infringement and for 
tampering detection to help provide a common framework for digital image forensics. 
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