

Revealing Hidden Neural Processes Signal Processing with MEG in the Human Brain

Kevin Kahn Nai Ding, Dr. Jonathan Simon

Brief Overview

- What is magnetoencephalography (MEG)?
 - Use to detect and analyze neural activity
- What did I do with MEG?
 - Uncover a hidden neural process
 - Localize source of that process

- Brain Imaging
 Technique
 - Neural currents create small magnetic fields
 - MEG measures magnetic field around head
 - Magnetic dipoles mean localizable neural source

Figure 1. Magnetic Dipole from Neural Current

Possible Dipole

- Analyzed previously collected auditory response data
- Averaged power in frequency domain
- Observed two peaks in head map

Figure 2. Head Map of Power at 3.5 Hz

- Examine phase differences and coherences
- Connect channels consistently in or out of phase

Figure 3. Channel Correlations Imposed on Head Map

Localization

Need a single magnetic field head map for localization

- Weighted average based on sign and power of signal

Figure 5. Neural Source Found by Localization Algorithm

Figure 4. Magnetic Field over Head after Weighting

Conclusions & Future Work

- Peaks in power were from dipole
- Rough localization successful
 - Improve with cleaner signal
- Physiological source still unknown
 - Frontal lobe \rightarrow Higher order processing

Acknowledgements

- Dr. Jonathan Simon
- Nai Ding
- Jeff Walker
- MERIT program and staff
- National Science Foundation CISE award #0755224

Thank You!