
1



An Analog VLSI Implementation of the
Wake-Sleep Learning Algorithm Using Bi-Stable

Synaptic Weights
Guy Lipworth

Dept. of Electrical
and Computer Engineering

University of Florida
Gainsville, Florida 32611
Email: musicguy@ufl.edu

Kyle McMillan
Lane Department of Computer Science

and Electrical Engineering
West Virginia University

Morgantown, West Virginia 26506
Email: kmcmill2@mix.wvu.edu

Abstract—Drawing on biological systems for their inspiration,
typical supervised neural networks learn to classify features
within a set of inputs through repetition. Here, we focus on
using an auto-encoder network to memorize each item in a set
of inputs rather than to classify them. We have simulated this
network in MATLAB using the “Wake-Sleep” learning algorithm
proposed by Hinton et al. [1] and demonstrated that the algorithm
can be used successfully with binary synaptic weights trained
in a bistable manner. Working from these simulations, we have
designed and simulated a low power analog VLSI synapse circuit
with analog but bi-stable weights that can implement the Wake-
Sleep algorithm.

I. INTRODUCTION

As we go about our daily lives, we make extensive use of
our recognition abilities. When you walk down the hallway
toward your office in the morning, you can pick your office
out of the collection of all others in the hall. Although all of
the offices may have similar characteristics, you know which
one is yours because you recognize particular features around
it. Perhaps it is a poster in the hallway opposite your office.
Perhaps its the burned-out light in the hallway immediately
outside the door, or the strange music your co-worker plays
when they think no one is listening. Your brain recognizes a
number of these unique features and combines them into one
thought, “I’m standing right outside my office.”

Our challenge is to give this same ability to a robot with
an extremely low-power implementation. To do so, we must
design a system capable of recognizing the unique features of
an input and remembering them at any point in time. In this
paper we will introduce neural networks, (sections II & III),
how to train them to memorize inputs according to the Wake-
Sleep Algorithm (sections IV & V), and the several circuits

The authors would like thank the following people who contributed time,
expertise, motivation and inspiration to this project.
FACULTY ADVISORS:
Timothy Horiuchi
Pamela Abshire
GRADUATE ADVISORS:
Timir Datta
Anshu Sarje

Fig. 1. A Perceptron: inputs are multiplied by their corresponding weights
before being summed together and passed through a transfer function to
obtain the output. The transfer function shown here is the unit step but others,
including the signum, tanh and tansig, can be used.

we used and designed to implement the training in hardware
(sections VI & VII).

II. THE PERCEPTRON AND SYNAPTIC WEIGHTS

The biological neuron communicates with other neurons
through synapses, or the connection points between neurons.
When modeling the neuron in circuits, neuromorphic engineers
traditionally break this biological system down into discrete
parts and treat the synapse and neuron as independent com-
ponents. The synapse integrates voltage spikes into current;
a higher spike-train frequency produces a larger current. The
neuron integrates synaptic currents and produces output volt-
age spikes when the integration rises above a certain threshold.

A simplified description of the relationship between the
synapse and the neuron is shown in the perceptron in Fig.
1. Each of the perceptron’s inputs is multiplied by a weight -
this part of the perceptron can be thought of as the synapse.
The perceptron then sums the results of each multiplication
(synaptic outputs) and passes them through a transfer function
to produce an output - this is the neuron-like part. In our
figure the transfer function is the unit step, but other transfer
functions may be used as well. The perceptron demonstrates



Fig. 2. Simple Auto-Encoder Network with separate Generation and
Recognition weights.

how several synaptic outputs are passed to a neuron as inputs
to create one output. Biological synaptic weights allow the
neuron to discriminate between synapses; since larger weights
produce greater synaptic outputs, the weights tell the neuron
the importance of each synapse and its associated input.

III. THE AUTO-ENCODER NEURAL NETWORK

By feeding the output of one perceptron into the input of
another we can create a neural network as shown in Fig.
2. Adding more perceptrons in this manner allows us to
add layers to the network, or make an existing layer larger.
Because the overall outputs of the network are the outputs
of the second layer we call the second layer of perceptrons
the ’Output Layer’ and the first layer the ’Hidden Layer’. We
also give each set of weights a different name to be able to
distinguish between them: The weights between the network’s
inputs and the hidden layer are called ’Recognition Weights’,
while the weights between the hidden and output layers are
called ’Generation Weights’.

In these experiments, a perceptron-based auto-encoder neu-
ral network was used. This network compares the network
outputs to its inputs and trains its synaptic weights according
to the perceptron learning rule until the outputs are identical
to the inputs:

Wnew = Wold + γ(In)(E)

Where Wnew is the new synaptic weight, Wold is the
previous synaptic weight, γ is the learning rate (between 0 and
1), In is the synaptic input, and E is the error, in this case
the difference between the desired output and the perceptron
output.

There are several ways to train the synaptic weights of a
multiple-layered neural network; in our project we focus on
the Wake-Sleep Algorithm.

IV. WAKE-SLEEP ALGORITHM

To simulate an auto-encoder in MATLAB, we created a two
layer auto-encoder with 25 hidden perceptrons. As shown in
Fig. 3, inputs to the network are images of 10 pixels wide by
15 pixels long; thus the desired outputs are also 10x15 pixel

Fig. 3. A simplified block diagram showing 10x15 pixel input and output
images connected by a hidden layer and two separate sets of weights.

images and we need 150 neurons in our output layer. Each
pixel in our images was set to a value of 1 or -1, and the
perceptron transfer function was the signum function (output
is +1 if the summation is positive, 0 if the summation = 0,
and -1 if the summation is negative).

Initially, all Recognition and Generation weights were nor-
mally distributed with zero mean and a standard deviation
of one. The Wake-Sleep Algorithm was then used to train
the auto-encoder’s weights in two cycles. During the Wake
cycle, the network passed an input through the Recognition
weights to produce an encoded version of the input in the
hidden layer. The output of the hidden layer is passed through
the Generation weights, which were trained to replicate the
original input to the network. During the Sleep cycle, the
hidden layer was randomly excited and passed through the
Generation weights to form a “fantasy image.” This fantasy
was passed through the Recognition weights, which were then
modified in an attempt to recreate the hidden layer states that
resulted from the initial random excitation. This process forms
a two step iterative algorithm, with each cycle improving the
overall recognition abilities of the network until it converges
on an optimal encoding solution (minimum description cost)
for a particular set of inputs.

A. Wake Cycle

During the Wake cycle, an image is randomly selected from
a pool of 20 test images. Each pixel serves as one input to a
perceptron in the hidden layer - thus each perceptron in the
hidden layer has 150 inputs. In addition, since each perceptron
has one weight associated with each input, we need 3,750
recognition weights (25 hidden perceptrons multiplied by 150
inputs). The hidden states - the outputs of the perceptrons in
the hidden layer - are sent through the Generation weights to
the output layer. Since each of the 150 output layer perceptrons
receives 25 inputs (from the hidden layer) there are 3,750
independent Generation weights.

An error signal for each output pixel is computed by
comparing the output image to the input image (our desired
output), and the Generation weights are trained in an analog
manner according to the perceptron learning rule.

During the wake cycle we repeat the process with the same
image for 30 iterations before displaying a new image and
retraining the weights. The Wake cycle ends after 500 hundred
iterations of the process described above.



Fig. 4. Time vs Synaptic Weight of a perceptron. As the “hidden” analog
weight is trained, the digital weight used in computation is snapped high or
low as the analog weight crosses a threshold, here set to zero Volts.

B. Sleep Cycle

During the Sleep cycle, our input is no longer a 10x15
image. Instead, we randomly excite the hidden layer to create
20 hidden states with values of +1 or -1. These hidden states
are sent through the Generation weights to create a 10x15
matrix which is then passed through the Recognition weights
to produce a 20 element output matrix. Next, we compare
the output to the randomly excited hidden states which served
as inputs, compute an error signal, and train the Recognition
weights. As was done in the wake cycle, we repeat this process
500 times with different randomly generated inputs. Notice
that the sleep cycle is similar to a wake cycle except that
it ’begins’ at the Hidden layer; the 10x15 matrix generated
during the sleep cycle does not serve as an output in the sleep
cycle, but is analogous to the output image generated in the
wake cycle.

To train the weights we followed each wake cycle with a
sleep cycle and repeated the process 50 times. The last sleep
cycle, which trained the recognition weights with randomly
created inputs, was then followed by one more wake cycle
which trained the recognition weights again to ensure proper
weighting.

C. Binary Weights

Weights trained in an analog manner mimic the way synap-
tic weights are biologically trained. However, quantizing the
weights in a binary manner will facilitate storage in electronic
& possibly biological hardware over long periods of time.
To quantize the weights, we modified the auto-encoder: for
each weight (Recognition and Generation) we added a ’hidden
weight’ (unrelated to the hidden layer). The hidden weights
were trained as above, in an analog manner (with a limited
range of analog values). At the end of each cycle, however,
each weight was ’snapped’ to -1, 0, or +1 by taking the signum
of the hidden weight, shown in Fig. 4.

(a) Network Testing With Analog Weights

(b) Network Testing With Quantized Weights

Fig. 5. MATLAB simulations of an auto-encoder network trained with analog
weights (a) and binary weights (b). After the network has been trained on
20 images over 50 Wake / Sleep cycles of 500 iterations each, learning is
stopped and the network is presented with normally distributed noise. On
every 10th exposure, an image the network has been trained to recognize
is presented and the percentage error drops dramatically, indicating that the
network “recognizes” the image.

At the end of each cycle we also ’snap’ the ’hidden weights’
to -1, 0, or +1 using the same method to prevent them from
increasing or decreasing to unrealistic values. This is done
after finding the values of the quantized weights.

V. MATLAB SIMULATION RESULTS AND ANALYSIS

Figures 6(a) 6(b) and show Error vs. Training Iterations in
MATLAB during the first wake cycle for the auto-encoder
trained with analog weights and quantized weights, respec-
tively. Error is high when a new image is displayed, and
decreases while the same image is repeatedly displayed and
the weights are trained. Similar patterns are observed for the
Sleep cycle. Typically, the Wake Cycle error for the analog
weighted network drops to 0.5% and the error for the binary
weighted network drops to 3% within the 30 iterations during
which the same image is displayed.

For post-training simulation of the network, we selected



(a) Training With Analog Weights (b) Training With Quantized Weights

Fig. 6. MATLAB simulation of an auto-encoder network training with analog 6(a) and quantized 6(b) weights. The figure on the right part of 6(a) is an
enlarged section of the left part of 6(a), indicated by the dotted rectangle. (The same is true for the two images in 6(b) ) A new image is presented to the
network and displayed 30 times. The initial exposure results in high percentage error, but as the image is repeatedly displayed the error decreases (error
increases after reaching zero due to random noise added to the inputs). This pattern of exposure is repeated every 30 iterations.

Fig. 7. System Architecture for the Wake Cycle. The perceptron used to
create the simulated systems in MATLAB has been replaced with a synapse
and neuron pair, and the learning rule that implements the auto-encoder
network is provided by the Weight Modification Circuit.

a 10x15 image as the input and calculated the error by
comparing it to the output (similar to the wake cycle but
without modifying the weights). The error graphs for the
analog-weighted and quantized-weighted auto-encoders are
shown in Figures 5(a) and 5(b), respectively. To test if network
training actually occurred we displayed a series of images
that the system was not trained on, but every 10th iteration
displayed an image that the network was trained on. The error
is high for images the network had not seen before, and spikes
of low error are produced for images the network had seen
during training.

Our simulation results confirm that an auto-encoder network
with quantized synaptic weights can approach the performance
of a network with analog weights and the same complexity.
While the resolution of the individual synapse is compromised,
a large network with many synapses can overcome this limi-
tation and produce accurate outputs.

VI. HARDWARE DESIGN

Fig. 7 shows the overall system design broken down into
basic circuit blocks: neurons, synapses, and the Weight Modi-
fication block. For our neuron circuit we chose to use a neuron
previously described by T. Horiuchi [2]. The synapse circuit
has been designed to implement a bi-stable synaptic weight,
and the Weight Modification block implements the auto-
encoder network learning rules. Each block will be covered
in the sections below.

A. Neuron Circuit

Horiuchi’s neuron provides low power consumption, an
adjustable refractory period, and an Address - Event Represen-
tation (AER) interface. The specific features of this circuit are
not essential to the operation of our system; any of the myriad
Integrate-And-Fire Neuron circuits available in literature can
be used. The only requirement is an adjustable refractory
period to allow for circuit and system tuning.

B. Synapse Circuit

The most basic function of the synapse circuit is to integrate
a series of voltage spikes into a current output. The synaptic
output should also depend on an adjustable “weight” that
represents the importance of the neuron in the overall neural
network. The synapse in Fig. 8 modulates the output current
by varying the gate voltage (the synaptic weight) of transistor
M9, which changes the amount of current that can pass through
the transistor’s channel. The synapse accomplishes the voltage
spike integration using a Current Mirror Integrator (CMI) [3],
located on the right side of the circuit. For a full explanation of
the operation of the CMI, see [3]. The synaptic weight, stored
as a voltage across capacitor C1, can be modified by two
systems: the Bi-Stability circuit and the Weight Modification
Circuit through the node labeled inc/dec weight.

1) Bi-Stability: This circuit draws heavily from the work
of Indiveri et al. [4]. In this synapse circuit, the Bi-Stability
section is found in the left-hand part of Fig. 8. A thorough
description of the Bi-Stability circuit’s operation is provided
in [3], so here we will give a high-level view of the circuit’s
characteristics.

The purpose of the Bi-Stability circuit is to adjust the
weights over long time periods in response to the leakage
currents through capacitor C1. Recognizing that leakage cur-
rents will modify the voltage across C1, the Bi-Stability circuit
slowly pulls the weight towards a high or low value by
comparing the synaptic weight to a voltage threshold Vwt thr.
If the weight is higher than Vwt thr, the Bi-Stability circuit
slowly drives the output even higher. Over time, this output
voltage will reach a limit set by Vwt high. If the weight is lower



Fig. 8. Synapse Circuit composed of a Bi-Stability section and a Current Mirror Integrator

Fig. 9. Weight Modification Circuit. The blocks SI1 through SI4 are spike
integrator circuits, shown in Fig. 10. These circuits integrate the spiking
neuron signal from the Input (the Desired Output), Neuron Output and
Synaptic Input and produce slow changing voltage outputs that are used to
determine how to modify the synaptic weight via ILEARN

than Vwt thr, the circuit will drive the output even lower until
the synaptic weight is zero Volts. The rate at which this occurs
is set by Vleak and should be much slower than the effect of
the Weight Modification Circuit.

2) Current Mirror Integrator: The Current Mirror Integra-
tor (CMI) [5] integrates a spiking input on the gate of transistor
M7 across C2. This changing voltage across the capacitor
produces a current through M11, which is pushed through
the cascode transistor M12 to produce a current at the node
labeled Iinj .

C. Weight Modification Circuit

The Weight Modification (WM) circuit shown in Fig. 9
implements the actual network learning rules. This circuit
performs the calculations necessary to implement the auto-
encoder by comparing the output of the system to the input
of the system as illustrated in Fig. 7.

Before we begin explaining the WM circuit, we must note
that unlike our MATLAB simulations, our hardware design
includes only excitatory synapses. As a result, our synapses
can not have negative weights; this affects the way we train
our weights. In addition, please note that Fig. 7 shows only
one WM circuit. To implement the entire algorithm, two are
needed: one to train the Generation weights in the Wake Cycle
and one for the Recognition weights in the Sleep Cycle. In the
following discussion we explain the circuit with its inputs as
shown in Fig. 7, which corresponds to the Wake Cycle.

The Weight Modification circuit modifies the synaptic
weight after deciding if the weight is too high or low. This is
done by comparing the network output and input (its desired
output) through Spike Integrator (Fig. 10) circuits. If the actual
output signal is lower than the desired output signal, the
synaptic weight is apparently too low and should be increased.
Alternatively, if the actual output signal is higher than the
desired output signal the weight should be decreased. The
WM circuit also checks the synaptic input before adjusting
the weight: since the synapse would have no noticeable output
if the synaptic input is low, the circuit will not modify the
synaptic weight. The circuit accomplishes weight modification
by sourcing or sinking current through ILEARN , which is
connected to the synaptic weight capacitor C1 in the Synapse
circuit. When the output is too high (and the synaptic input is
high) transistors M4 and M5 are on, sinking current from the
synaptic weight and thus lowering its value. When the output
is too low (and the synaptic input is high), M2 and M3 are
on and current is sourced to the synaptic weight, raising its
value. Transistors M1 and M6 are used to limit the amount of
current flowing to/from the weight in order to set the learning
rate.

1) Spike Integrator: The network input (desired output),
output, and synaptic input are all voltage spike trains of
varying frequencies. Since these spike trains are asynchronous,



Fig. 10. The Spike Integrator circuit. A spiking voltage at the gate of
spike int input produces a current through transistor M3, which changes
the voltage across C1.

Fig. 11. Simulation results of a Synapse / Neuron pair controlled by a Weight
Modification circuit. Initially, the synaptic weight is zero and the output
neuron spiking frequency is zero. As time increases, the synaptic weight is
pushed higher by the Weight Modification Circuit. When the output neuron
spikes too quickly, the Weight Modification circuit decreases the synaptic
weight until the output neuron spiking frequency matches the input neuron
spiking frequency.

it is difficult to compare them directly. To accomplish this, our
Spike Integrator circuits (Fig. 10) translate the spike frequency
into slowly-changing DC voltages by discharging capacitor C1
with every spike. Each spike turns transistor M1 on for a short
time period, during which current flowing from C1 through
M1 lowers the capacitor voltage Vout. Transistor M2 limits
amount of current that flows through the drain of M1, allowing
us to control the rate at which Vout decreases. Between spikes,
current flowing through M5 increases Vout slowly. Therefore,
a higher frequency discharges the capacitor faster than a lower
frequency. By comparing Vout using WROTAs (Wide Range
Operational Transconductance Amplifiers) in the rest of the
Weight Modification Circuit, the circuit can determine which
frequency is higher. The output of WROTA2 is a digital signal
and indicates which input is spiking faster than the other.

VII. CIRCUIT TEST RESULTS AND ANALYSIS

Our synapse and Weight Modification circuits were tested
using a single synapse neuron pair. Performance was observed
by setting the input (also the desired output) to a fixed 100
Hz neural spiking frequency. The output neuron’s spiking

frequency was observed and compared to the desired input
frequency to determine the synaptic weight.

An example trial is shown in Fig. 11. At time = 0, the
synaptic weight (Voltage) is low and the neuron output is low.
As time passes, the WM increases the weight in an effort to
make the output neuron spike faster. The weight continues to
increase until the neuron output is too high (here, at time =
0.5 seconds). This condition is detected by the WM circuit
and the synaptic weight is decreased until the desired output
frequency is equal to the actual output frequency at time = 1.2
seconds.

VIII. CONCLUSIONS

Through the MATLAB circuit simulations, we have demon-
strated that an autoencoder network can operate with binary
weights. Though there is a significant loss in the resolution
of the individual synapses, the auto-encoder network is still
capable of “remembering” input patterns.

Our successful simulations led to the design of a simple
synapse and the Weight Modification Circuit. By using these
elements with an existing neuron design, we have demon-
strated that a synapse / neuron pair can be trained to modulate
its output signal to match an input signal and assume a binary
state over long periods of time.

IX. FUTURE WORK

Since we simulated our circuit with only one synapse-
neuron pair, we were not able to demonstrate that the synaptic
weight can assume a binary state over long periods of time
(due to the high synaptic accuracy needed when using only one
synapse). In the future, we would like to implement networks
with many more synapses in the hope that the decreased cost
associated with binary storage will allow for an increase in
network complexity and match the overall functionallity of a
purely analog system.

It is our belief that the circuit elements presented in this
paper can be used to make a robust auto-encoder in silicon.
By using separate WM circuits for the Recognition and
Generation weights, it is also possible to fabricate a true
hardware implementation of the Wake-Sleep algorithm. By
combining both of these structures into a monolithic design,
the groundwork presented here can be transformed into a
practical learning circuit.

ACKNOWLEDGMENTS

The authors would like to thank Professors Timothy Hori-
uchi and Pamela Abshire for their inspiration and guidance,
Timir Datta and Anshu Sarje for their advice and dedication,
and the National Science Foundation for making this project
possible.

REFERENCES

[1] G. Hinton, P. Dayan, B. Frey, and R. Neal, “The ”wake-sleep” algorithm
for unsupervised neural networks,” Science, vol. 268, p. 1158, May 1995.

[2] T. Horiuchi, “A neural model for sonar-based navigation in obstacle
fields,” in Proceedings of the International Symposium on Circuits and
Systems, 2006, pp. 4543–4546.



[3] G. Indiveri, E. Chicca, and R. Douglas, “A vlsi array of low-power spiking
neurons and bistable synapses with spike-timing dependent plasticity,”
Neural Networks, IEEE Transactions on, vol. 17, no. 1, pp. 211–221,
Jan. 2006.

[4] S. Mitra, S. Fusi, and G. Indiveri, “A vlsi spike-driven dynamic synapse
which learns only when necessary,” Circuits and Systems, 2006. ISCAS
2006. Proceedings. 2006 IEEE International Symposium on, pp. 4 pp.–,
May 2006.

[5] S. Liu, J. Kramer, G. Indiveri, T. Delbruck, and R. Douglas, Analog VLSI:
Circuits and Principles. The MIT Press, 2002.


