

Robust Speech Recognition

Articulatory Information to Account for Coarticulation

Rob Bailey Kossivi Wody Edji Vikramjit Mitra Dr. Carol Espy-Wilson

Motivation

• Current Automatic Speech Recognition (ASR) systems are phone-based and assume phones to be distinctive regions.

 Current state-of the art ASR systems need to impose limitations (e.g., clearly-articulated speech or limited vocabulary) in the recognition task in order to handle speech variability such as coarticulation

Our Approach

- We are using articulatory information instead of phones to account for coarticulation
- Previous studies have used articulatory information in the form of the Cartesian coordinates of the pellet locations.
 - Pellet data are often inconsistent and introduce more non-uniqueness.
- In our study, we are using tract variables instead of pellet information.
 - The tract variables are relative measures and reduce the non-uniqueness.

Speech signal

Articulatory motion

Task 1: Speech Inversion

- Objective:
 - Train Neural Networks to estimate tract variables and pellet trajectories given a speech signal
 - NARX = Nonlinear Autoregressive Networks with Exogenous Inputs

- Procedure:
 - Implement the process of optimization through five trials of training for neural networks to achieve the most accurate network

MERIT FAIR BIEN 2009

Neural Network Training Results

Mel Frequency Cepstral Coefficients (MFCC)				
Tract	Correlation	Pellets	Correlation	
Variables				
GLO	0.98	LL	0.64	
VEL	0.90	UL	0.41	
LA	0.85	JAW	0.85	
LP	0.52	TD	0.93	
TTCD	0.93	TF	0.89	
TTCL	0.93	TR	0.93	
TBCD	0.91	Π	0.84	
TBCL	0.91			
Avg	0.87	Avg	0.78	

Acoustic Parameters (AP)				
Tract	Correlation	Pellets	Correlation	
Variables				
GLO	0.99	LL	0.60	
VEL	0.73	UL	0.63	
LA	0.76	JAW	0.83	
LP	0.69	TD	0.88	
TTCD	0.90	TF	0.82	
TTCL	0.86	TR	0.88	
TBCD	0.83	Π	0.75	
TBCL	0.88			
Avg	0.83	Avg	0.77	

Graph obtained using MFCC parameters

- Gestures are constriction actions along the vocal tract and they are defined by dynamic parameters
- How will gestures account for coarticulation?

• Procedure:

Conclusions and Future Work

- Neural networks estimated the tract variables more accurately than the pellets
- We were able to warp the synthetic speech signal to the natural speech signal
- We have obtained the gestures for the natural speech from the gestures of the warped synthetic speech
- Our research is a preliminary step in designing an ASR systems which uses gestures obtained from tract variables to account for coarticulation

Acknowledgments

National Science Foundation CISE award #0755224

- Dr. Carol Espy-Wilson
- Vikramjit Mitra
- MERIT BIEN Faculty

References

- H. Demuth, M. Beale and M. Hagan "Neural Network Toolbox 6 User's Guide" The MathWorks, Natick, MA, 2008.
- J. Frankel and S. King, "ASR Articulatory Speech Recognition", In proceedings of Eurospeech, pp. 599-602, Aalborg, Denmark, September 2001.
- J. Frankel and S. King, "A Hybrid ANN/DBN Approach to Articulatory Feature Recognition", in Proceedings of Eurospeech, Interspeech-2005, pp.3045-3048, Lisbon, Portugal, 2005.
- H. Nam, L. Goldstein, E. Saltzman and D. Byrd, "Tada: An enhanced, portable task dynamics model in matlab", Journal of the Acoustical Society of America, Vol. 115, no. 5, 2, pp. 2430, 2004.
- J. Westbury, "X-ray microbeam speech production database user's handbook", University of Wisconsin, 1994.