

Low Power Pulse-Based Communication

Santiago Bortman and Paresa Modarres David Sander Dr. Pamela Abshire

Supported by national Science Foundation CISE award #0755224

Design Objectives

- Carrier-less (baseband) communication
 - Low power consumption
- Data transmission through E.M. pulses
- Generation of short pulses
 - Large bandwidth
 - Fast data transmission rate
- Accurate reception of transmitted data

Design Overview

Summary

- Each bit is coded into a pattern of 1's and 0's
- A sequence of pulses is generated from that pattern
- There is a unit time during which a pulse represents '1'
- Data is transmitted through noisy channel
- Signal is re-digitized
- Noise creates false positives
- RAKE rejects false positives
- Digital data is recovered

The signal is broken up into small time windows And is sampled by the latches Data to be transmitted serially

The pattern is recognized by the

Transmitter/Receiver Circuits

Experimental Results

Low noise signal Pattern: 110110

Blue:	Clock
Yellow:	Filtered incoming pulses
Purple:	Digital output
Green:	Digital pulses moving through the delay line

Experimental Results

Noisy signal Pattern: 110101

Yellow: Incoming noisy pulses

Green: Recovered digital data (110101)

Purple: Output of the comparator circuit

Blue: Threshold

- Computer simulations have shown data transmission under low noise condition
- The circuits have been implemented using discrete devices
- Testing of the transmitter and receiver have shown promising results
- Timing issues are the most persistent problems
- Despite these problems data was recovered successfully

Further work:

- Transmission through antennas at various distances
- Implementation of integrated circuit design to obtain
 - Faster and more accurate pulses
 - Faster comparisons
 - Smaller devices