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Abstract*— Current state-of-the-art phone-based speech 
recognition systems fail to model coarticulation properly. 
Tri-phone and bi-phone based approaches can only model 
coarticulatory effects due to the immediate neighboring 
phones. Phonetic studies have shown that coarticulatory 
effects can exist beyond the regime of di-phone or tri-
phone based models and have also claimed that articulatory 
information can help to properly address those effects. The 
objective of our current study is to retrieve articulatory 
information from speech. Our task is twofold.  First we will 
develop a recurrent neural network (RNN) architecture that 
predicts articulatory information given synthetic acoustic 
speech (generated from the TAsk Dynamic and 
Applications Model) and compare it with previously 
proposed systems. To evaluate such a system for natural 
speech we require a natural speech database containing 
articulatory information. With this in mind, the second goal 
of our research is to propose and realize a methodology to 
specify articulatory information for a natural speech 
database, in this case the X-ray microbeam corpus. 

 
1. INTRODUCTION 
Current state-of-the-art Automatic Speech 
Recognition (ASR) systems assume that speech is a 
piecewise stationary signal, and models such 
stationary regions as phones. Such models primarily 
rely upon the distinctiveness of such stationary 
regions while creating the phone based models. 
Coarticulation is a speech production effect which 
results in assimilation of the place of articulation of 
one speech sound due to that of another. As a result, 
the distinctiveness of the phones often gets lost so 
that phone based acoustic models, particularly for 
spontaneous speech, do not fare well.  To address this 
short coming, di-phone or tri-phone based acoustic 
models are often developed, but they assume that 
coarticulatory effects only impact immediate phones 
which is not always true, as there are many instances 
where coarticulation extends beyond the immediate 
neighbors. In order for speech variability to be 
accurately modeled, limitations such as, clearly 
articulated speech or limited vocabulary for the ASR 
system must be imposed.  Several studies [1, 2] have  
 
 
* The first two authors have contributed equally to this paper and 
are in alphabetical order. 

 

suggested that articulatory information can model 
coarticulation effectively, which can efficiently 
address the pitfalls of the phone-based ASR 
architecture. To efficiently incorporate articulatory 
information in an ASR system, one needs to obtain 
such information from the acoustic signal. This 
research aims to analyze the feasibility of estimating 
such articulatory information from the speech signal, 
with a goal to exploit such information in an ASR 
system. 

Two forms of articulatory information were 
considered in this study, the pellet trajectories and 
tract variables. The pellet trajectories provide 
absolute articulatory motion information in a 
Cartesian plane, and are obtained by placing pellets 
(or transducers) on different articulators in the vocal 
tract.  Unfortunately being an absolute measure, the 
pellet information can be inconsistent and may suffer 
from variability. The tract variables are measures of 
the various constriction locations and their degrees in 
the vocal tract. The tract variables are relative 
measures and hence should be invariant. Obtaining 
articulatory information from speech is commonly 
known as the ‘speech-inversion’ problem and such a 
problem suffers from non-uniqueness, which stems 
from the fact that many different articulatory 
configurations result in similar acoustic properties. 
McGowan [3] stated that the tract variables, being a 
relative measure, should be less prone to non-
uniqueness problems than the pellet trajectories. 
Based on these facts we expect the tract variables will 
be better estimated than the pellet trajectories from 
the speech signal. This research uses eight tract 
variables and seven pellet locations (specified by x 
and y –axis locations in a Cartesian plane) as listed in 
Table 1. 
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Table 1: Description of Tract Variables and Pellets 
Tract Variables 

LA Lip Aperture 
LP Lip Protrusion 
TTCD Tongue Tip Constriction Degree 
TTCL Tongue Tip Constriction Location 

TBCD Tongue Body Constriction Degree 
TBCL Tongue Body Constriction Location 
VEL Velum 
GLO Glottis 
Pellets 
TD Tongue Dorsum 
TT Tongue Tip 
TR Tongue Rear 
TB Tongue Body 
UL Upper Lip 
LL Lower Lip 

JAW  Jaw 

 
The initial results reported in this study are obtained 
from using a synthetic speech database generated by 
the TAsk Dynamics Applications (TADA) model [4]. 
The synthetic database consists of utterances along 
with their groundtruth articulatory information, 
which helped in training the speech-inversion 
models. Unfortunately no natural speech databases 
contain tract variable information, even though some 
of them contain pellet trajectories. To realize a 
speech inversion module for natural speech we are 
proposing a methodology to create tract variable 
specifications for the X-ray microbeam database 
(XRMB) [5], which contains natural speech 
utterances.  
 
2. DATABASES 
2.1 TADA 
TADA is a speech production model generated at 
Haskins Laboratory. TADA takes either the phonetic 
transcription or the orthography of a word and 
outputs tract variables, the pellet trajectories and the 
gestures for that word along with acoustic parameters 
such as the amplitudes and bandwiths of formants.   
The acoustic parameters are used by HLSyn to 
generate the synthetic acoustic waveform. Using 
TADA, a synthetic word corpus of 420 utterances 
was generated.  Eighty five percent of the data were 
used as training samples and the remaining were used 
for testing. 
 
2.2 X-ray Microbeam 
The University of Wisconsin's X-ray Microbeam 
Speech Production database, used in this study, 
contains naturally spoken utterances both as isolated 
sentences and short paragraphs. The speech data were 
recorded from 32 female speakers and 25 male 
speakers, where each speaker completed 118 tasks. 
The data comes in three forms: text data consisting of 

the orthographic transcripts of the spoken utterances, 
digitized waveforms of the recorded speech and 
simultaneous X-ray trajectory data of articulator 
movements obtained from transducers (pellets) 
placed on the articulators. The trajectory data are 
recorded for the individual articulators: Upper Lip, 
Lower Lip, Tongue Tip, Tongue Blade, Tongue 
Dorsum, Tongue Rear, and Jaw.  
 
3. METHODOLOGY 
3.1 Gestures for Natural Speech 
According to gestural-phonology, gestures [6] are 
constriction actions along the vocal tract which are 
defined by dynamic parameters. The Task Dynamic 
model of speech production assumes that the 
articulatory movements are the results of the 
gestures, i.e. the gestures are the action units and the 
tract variables are their manifestations in time. 
According to gestural phonology, a given word can 
be represented as a constellation of gestures and 
coarticulation can be modeled as gestural overlap in 
time and reduction in space.  
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Figure 1: An example of gestures. It shows the movement or 
trajectories of three articulators while pronouncing the phrase 
“perfect memory”  
 

Figure 2 shows two instances of the utterance 
‘perfect memory’ from a male speaker; where the 
first one is well articulated and the second one is 
quickly pronounced.  
 

 
(a) 
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(b) 

Figure 2: Illustration of coarticulation- phrase “perfect memory” 
pronounced clearly (a), and quickly (b) 

 
In Figure 2(a), the words ‘perfect’ and ‘memory’ are 
uttered with a slight pause between them, i.e. as 
isolated words.  In Figure 2(b), ‘perfect memory’ is 
uttered more fluently with no pause between the 
words.  A comparison of the waveforms at the end of 
the word ‘perfect’ shows that the /t/ burst of the more 
carefully articulated utterance in part (a) is absent 
from the more casually spoken utterance in part (b).  
This apparent “deletion” of the phone /t/ is due to 
cross word-boundary coarticulation in the more 
casual utterance. That is, the speaker starts to 
articulate /m/ in the word “memory” before he has 
finished articulating /t/ in the word “perfect”. This 
coarticulation is evident from the articulatory 
information (the corresponding gestures are shown as 
blocks) displayed beneath the waveforms for the 
articulators tongue body, tongue tip and lower lip. 
The curves show how the vertical displacement for 
these articulators, which can be understood as the 
reverse of the constriction degrees of the relevant 
gestures, changes as a function of time. While the 
constriction degrees for the different articulators are 
similar for these two utterances during the /k/ and /t/ 
at the end of “perfect” and during the /m/ at the 
beginning of “memory, the timing is substantially 
different. For the more fluently spoken utterance, the 
closure gesture for the /m/ (labeled as “stop lab”) 
overlaps with the tongue tip constriction gesture for 
the /t/ (labeled as “stop alv”).  However, this overlap 
does not occur for the utterance in part (a).   What is 
most important to note is that, although the physical 
waveform for the more fluent utterance does not 
show a /t/ burst because of the overlapping gesture 
for the /m/, the closure gesture for the /t/ is still made 
by the speaker. Thus, the large variability that can 
occur in the physical signal is reduced at the gestural 
level. This stability at the gestural level is attributed 
to the ‘invariance property’ of the gestures. 
 

 

In an articulatory-gesture based ASR system, 
gestures will be used as the sub-word level 
representation of the speech signal. To realize such 
an ASR system we need a natural-speech database 
that contains articulatory gestural specifications along 
with its associated tract variables. For this task, we 
have chosen to work with the X-ray microbeam 
corpus. The procedure involved in specifying the 
articulatory gestures for XRMB utterances are as 
follows- (1) create a pronunciation dictionary 
containing words with their possible phone 
sequences, and (2) create a synthetic speech database 
given the pronunciation dictionary using TADA. 
TADA generated the ground truth gestural 
specifications and their corresponding tract variables 
as well. To infer the gestures for XRMB speech from 
the synthetic database we obtain the dynamic time 
warping scale by comparing the synthetic words with 
their corresponding natural speech counterparts. The 
obtained scale is then used to perform dynamic time 
warping of the associated gestures. The warped 
gestures can be interpreted as the articulatory 
gestures corresponding to the natural speech of the 
X-ray microbeam corpus. Finally, we evaluated the 
quality of the DTW performed on the word and the 
gesture. 

Since we know that articulatory gestures are 
action units and the articulatory motions are their 
results, hence to estimate the gestures, we must first 
obtain the articulatory information using speech 
inversion. 

 
3.2 Speech Inversion 
We have performed speech inversion through 
training Artificial Neural Networks (ANNs) and 
optimized the network by observing the error surface 
obtained from varying the number of hidden layers, 
the number of neurons in each of those hidden layers 
and the contextual information of the input acoustic 
feature. Neural networks are composed of simple 
elements operating in parallel. These elements are 
inspired by the biological nervous systems. As in 
nature, the connections between elements largely 
determine the network function. You can train a 
neural network to perform a particular function by 
adjusting the values of the connections (weights) 
between elements.  Neural networks have been 
trained to perform complex functions in various 
fields to solve problems in function fitting, pattern 
recognition, and clustering [7].  During the training 
of ANNs, the weights and biases tied to each neuron 
are updated until the specified configuration provides 
the least error (typically mean squared error) or 
satisfied some convergence requirements. Typically 
an ANN architecture consists of an input layer 
(whose size is determined by the dimensionality of 
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the input features), one or more hidden layers (the 
number of hidden layers are user specified), and an 
output layer whose size depends upon the 
dimensionality of the target set. 

We have used a nonlinear autoregressive 
network that has a feedback loop connecting the 
output with the input layer. The feedback loop acts as 
a low pass filter, yielding smoother trajectories for 
both the pellets and the tract variables. It should be 
noted that articulatory information such as the pellet 
trajectories or the tract variables are inherently low 
pass in nature and hence the low-pass constraint of 
the autoregressive network helps to capture this 
property. Speech inversion is inherently a non-linear 
mapping problem. To induce non-linearity in the 
network, tan-sigmoid activation functions were used.  
In this research the speech signal is parameterized as 
Mel-Frequency Cepstral Coefficients (MFCCs) and 
Acoustic Parameters (APs) [8,9,10] (e.g. formant 
information, mean Hilbert envelope, energy onsets 
and offsets, periodic and aperiodic energy in 
subbands [11] etc.).  The ANN inputs are the 
contextualized parameter vector generated from the 
speech signal.  The contextualized parameter vector 
can be created as follows: given a frame in the signal, 
we consider n frames before the main frame as well 
as n frames after the main frame.  We concatenate the 
feature vectors derived from these frames to create 
the contextualized feature vector, our input.  The 
number n is an integer between five and eleven and 
this integer value is what we refer to as our context 
value. 

We implemented the process of ANN 
optimization through five different trials while 
training.  Several steps were taken to optimize the 
network. With a single hidden layer architecture 
having 25 neurons and a feedback loop of unit delay, 
we iteratively varied the context. Once we obtained 
the optimal context we held that constant for the rest 
of the trials.  We then varied the number of neurons 
in the first hidden layer, from twenty-five to two 
hundred in increments of twenty-five and the optimal 
number of neurons was selected based upon the 
obtained error. Once we obtained the optimal number 
of neurons in the first hidden layer we held that 
number constant and incremented the delay in the 
feedback loop from one to five.  The optimal delay 
was found and held constant and we then added a 
second hidden layer and varied the number of 
neurons in it, in the same fashion as that for the first 
hidden layer.  Once we have found the optimal 
context, delay and number of neurons in the first and 
second hidden layers, we then increased the number 
of iterations from five thousand to eight thousand and 
trained the network one last time. 

We used several variations of neural networks in 
our research based on the number of outputs from the 
network and the type of parameterization used.  We 
first trained fifteen individual networks; each one 
gave a single output, the trajectory for a specific tract 
variable or pellet. Next, we trained one single 
network which output all of the tract variables and 
another separate network which output all of the 
pellet trajectories. We used both of these methods for 
MFCCs and for APs. Therefore, for clear reference 
from now on we will refer to the results from these 
configurations: (a) individual networks estimating 
tract variables or pellet trajectories using MFCCs or 
APs with a single output and (b) a single network 
estimating tract variables or pellet trajectories using 
MFCCs or APs with multiple outputs. 
 
4. RESULTS 
The articulatory information must be known a priori 
to estimate gestures; therefore we first present the 
results from speech inversion and end with specifying 
gestures for natural speech. 
 
4.1 Neural Network Training Results 
Throughout the process of optimization, the accuracy 
of the estimated trajectory of the articulators or tract 
variables relative to the target trajectories improved.   
The performance metric used to evaluate the 
accuracy of the estimated articulatory trajectories 
(tract variables or pellets) was the Pearson product 
moment correlation (PPMC). PPMC can be 
computed using the following equation: 
 

 
 
Where r = Pearson correlation, xi = actual 
trajectory, yi = estimated trajectory, n= number of 
elements in xi 
 

a) Training using one ANN for each TV or Pellet 
(individual networks with a single output) 

 
In Table 2, we present the optimal PPMC of the 

different pellets and tract variables using MFCCs and 
APs 
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Table 2: ANN correlation for TV and pellet for individual 
networks with a single output where TV = Tract Variable, r= 
Pearson Correlation, Pel = Pellet. 

MFCC AP 
TV r Pel r TV r Pel r 

GLO 0.98 LL 0.64 GLO 0.99 LL 0.60 
VEL 0.90 UL 0.41 VEL 0.73 UL 0.63 
LA 0.85 JAW 0.85 LA 0.76 JAW 0.83 
LP 0.52 TD 0.93 LP 0.69 TD 0.88 
TTCD 0.93 TF 0.89 TTCD 0.90 TF 0.82 
TTCL 0.93 TR 0.93 TTCL 0.86 TR 0.88 
TBCD 0.91 TT 0.84 TBCD 0.83 TT 0.75 
TBCL 0.91  TBCL 0.88  
Avg 0.87 Avg 0.78 Avg 0.83 Avg 0.77 

 
Using both MFCCs and APs, the correlation 

values of the tract variables were found to be higher 
than the pellet trajectories. The plots of the estimated 
trajectories are shown in Figure 3.  
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Figure 3: Estimated vs. target trajectory of the TD pellet and GLO 
tract variable using MFCCs. 

 
b) Training using one ANN for all TVs or Pellets 

(one network with multiple outputs) 
 

Similarly to part a), we present in Table 3 the 
optimal correlation of the tract variables and pellets. 
 

Table 3: ANN correlation for TV and pellet for a network with one 
input and multiple outputs where TV = Tract Variable, r= Pearson 
Correlation (%), Pel = Pellet. 

MFCC AP 
TV r Pel r TV r Pel r 

GLO 0.80 LL 0.52 GLO 0.91 LL 0.39 
VEL 0.44 UL 0.46 VEL 0.33 UL 0.31 
LA 0.50 JAW 0.61 LA 0.56 JAW 0.40 
LP 0.39 TD 0.83 LP 0.58 TD 0.62 
TTCD 0.68 TF 0.83 TTCD 0.68 TF 0.62 
TTCL 0.63 TR 0.83 TTCL 0.70 TR 0.62 
TBCD 0.63 TT 0.66 TBCD 0.68 TT 0.53 
TBCL 0.66  TBCL 0.63  
Avg 0.59 Avg 0.68 Avg 0.63 Avg 0.50 
 

Comparing the correlations, we can state that the 
estimation of the tract variables is more accurate than 
those of the pellets when using APs but not when 
using MFCCs. 

The approach used in b) yielded poor 
estimations, with a correlation average of 0.59 for 
tract variables compared to 0.87 for tract variables in 
part a). Therefore, for the rest of the project we used 
individual networks with a single output to estimate a 
given pellet trajectory or tract variable.  
For some articulators and tract variables APs yielded 
better results, while MFCCs gave more accurate 
results for others. We will continue to use both 
parameters until further experiments confirm the 
ideal parameter. 

The different experiments using artificial neural 
networks have proven that tract variables gave more 
accurate estimations than articulators, as shown in 
Figure 3. We will focus the rest of the speech 
inversion task in obtaining articulatory information 
from tract variables.  
 
4.2 Dynamic Time Warping Results 
We used DTW to perform a non-linear mapping of 
synthetic speech signals to natural speech signals. 
Figure 4 shows different signals of the word 
“problem”. Wave 1 represents the synthetic signal, 
wave 2 is the natural signal and wave 3 is the warped 
signal.  
 

 
Figure 4: DTW performed on the word “problem” 1- synthetic 
signal, 2- natural signal, 3-warped signal 

              Target Position 
              Estimated Position 
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Initially, signal 1 and 2 differed from each other in 
terms of their corresponding phone durations. After 
the DTW of signal 1 was performed, we can see that 
both the natural signal and the warped signal line up 
properly (in terms of frication and duration). Once we 
warped the word itself, we also warped the gestures 
of synthetic speech in order to obtain the gestures for 
natural speech. 
 
5. CONCLUSION 
Through our research we were able to successfully 
train different autoregressive neural network 
architectures for the prediction of tract variables and 
pellet trajectories.  The results show that individual 
ANNs with a single output provided a more accurate 
estimate than the one with multiple outputs.  
Furthermore, we observed that for both the acoustic 
features, MFCCs and APs, the tract variables were 
estimated more accurately, in most of the cases, than 
the pellet trajectories.  The most accurate network 
configuration was the one in which we had different 
networks estimating each tract variable individually. 
We were not able to make such a claim regarding the 
performance of the MFCCs against the APs; some 
networks were more accurate with MFCCs as the 
input and others with APs. 

We were able to use dynamic time warping to 
warp synthetic speech to the natural speech of the 
same word and phonetic transcription.  We were also 
able to use that warping in order to obtain the 
gestures for the natural speech from the gestures of 
the synthetic speech. 

This research is a preliminary step in designing 
an ASR system which uses gestures to account for 
coarticulation.  Future work would be directed 
toward realizing better and more efficient strategies 
to derive gestural information for natural speech. 
Once the gestural specifications and articulatory 
information are generated in full for a natural speech 
corpus, the proposed speech inversion models should 
be implemented for the natural speech corpus to see 
the feasibility of the speech inversion task in a real-
world scenario. 
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