

Optimizing Bacterial Adhesion to a Microfluidic Platform for Monitoring Bacterial Biofilm Growth

Aaron Cheng, Mariana Meyer, Peter Dykstra, and Reza Ghossi

INTRODUCTION

Objective: Optimize bacterial adhesion in a microfluidic device using poly-L-lysine and fibrinogen

•Bacteria undergo cell-cell communication through uptake and release of autoinducers (signaling molecules)

•Reaching population threshold, a change in gene regulation leads to biofilm formation

Bacterial Biofilms:

- •Composed primarily of bacteria, polysaccharides, and proteins
- •Prevalent in microbial infections of the body, with increased antibiotic resistance
- •Bacterial adhesion is the first stage in biofilm development

Studying Biofilms:

•Biofilms can be optically monitored in microfluidics, with the advantages of a highly controllable environment, amplified sensitivity, inexpensive setup, and parallel operation •Poly-L-lysine (polypeptide of L-lysine) and fibrinogen (plasma protein) shown to increase bacterial adhesion in generic bacteria, may increase repeatability of biofilm formation in microfluidics

MICROFLUIDIC PLATFORM

- •A biocompatible transparent polymer (PDMS) used to create microfluidic channel
- •Fluidic tubing connected to syringe and ports for interfacing the channel
- •Design enables up to 6 lab-on-a-chip devices to be operated in parallel
- •Using syringe/tubing, device is sterilized, inoculated with bacteria, incubated to allow bacteria to attach, and free-floating bacteria rinsed away with LB growth media

DATA COLLECTION

- •Bacteria in channel imaged using fluorescence microscopy
- •Images analyzed using ImageJ to evaluate bacterial adhesion

Fluorescence image

MEMS SENSORS AND ACTUATORS LAB

Carrier slide

RESULTS

Poly-L-lysine Testing:

•0.01% poly-L-lysine flowed into channel, dried overnight •Channel inoculated with bacteria of OD₆₀₀ 1.2, incubated 2hrs at 37°C, rinsed with LB growth media 30min

•2 additional experiments testing only rinsing at 10 μ L/hr yielded similar results

Fibrinogen Testing:

•35 µg/mL fibrinogen in PBS flowed into channel, incubated for 1hr at 37°C, rinsed 30min at 50 μ L/hr with PBS

•Bacteria of OD₆₀₀1.2 inoculated channel, incubated 2hrs at 37°C, rinsed with LB growth media 30min.

•5 additional experiments testing only rinsing at 10 μ L/hr yielded similar results

Incubation Testing:

•Varying bacterial incubation times with uncoated channels

•Bacteria of OD₆₀₀ 1.3 inoculated channel, incubated at 37°C, rinsed with LB growth media 30min at $10\mu L/hr$

CONCLUSION

- •Poly-L-lysine and fibrinogen shown to improve bacterial adhesion to the microfluidic device
- •Bacterial adhesion decreases as flow rate of rinsing procedure increases
- •Longer the incubation time, the more bacteria attaches to surface
- •Incorporation of the results will improve biofilm repeatability in the microfluidic device

ACKNOWLEDGMENTS

•Authors would like to thank the R.W. Deutsch Foundation and the National Science Foundation Emerging Frontiers in Research and Innovation (NSF-EFRI) for funding this work.

