

Vision-based Micro-robot Control Ken Tossell, Andy Hammond Eduardo Arvelo, Prof. Nuno Martins

Objectives

- Design vision software to locate robots in a video stream
- Determine each robot's unique identity using physical or behavioral observation
- Track individual robots' motion throughout a video stream, maintaining an accurate estimate of each robot's position and orientation

Detection

A first-level processor identifies regions of interest using motion detection and existing knowledge of robots.

Two-model foreground separation is based on a long-term background model and uses shortterm frame differencing to exclude regions that have not produced any robots. Promising blobs will be examined in the next step.

Identification

Static Identification: When robots have unique markings or colors, identity checking is enabled on each frame.

Dynamic Identification and Control*: Robots continually report the direction in which they're traveling (left or right), and the controller uses the process of elimination. **Or:** The controller specifies directions and observes robots for fullfield identification in log₂(|robots|) steps. * Ongoing and future work

subsystems.

Local search: In this step, the software matches color and intensity, separates nearby robots and finds bounding rectangles.

The software checks box proportions and passes coordinates on to the identification and tracking

Tracking

Motion Estimate: The tracking subsystem maintains Kalman-filter-based motion estimates, which it uses to match robots from frame to frame.

Possible bristlebot tracking parameters

Acknowledgements: National Science Foundation, Dr. Nuno Martins Dr. Pamela Abshire, Dr. Sarah Bergbreiter, Eduardo Arvelo

