
MERIT BIEN 2010 Final Report

1

Abstract—Bats are well known for navigating the world using

a sense that is completely foreign to human beings – echolocation.

Investigating echolocation may provide rich opportunities to

influence the technologies of today and the future. We are using a

sonar-based system modeled on bat echolocation to demonstrate a

pattern recognition neural network on a field-programmable gate

array (FPGA) board. The system learns to use sonar signals to

identify several specific objects presented at different distances.

The object identification provided by this system will be used in a

neural model of animal navigation currently being investigated.

Index Terms—Echolocation, Neural Networks, Interfacing,

VHDL

I. INTRODUCTION

ATURE often finds elegant solutions to the problems

scientists and engineers face in building artificial neural

systems. The use of acoustic echoes to detect objects (i.e.,

sonar) is one remarkable example found in the echolocating

bat. By observing the temporal pattern of echoes made by

different objects, an object recognition system can be designed

for detecting landmarks in the environment [4].

II. BACKGROUND

A. The Set-Up Configuration

In this project, a set of simple objects were created that

produce distinguishable patterns of echoes. Each object is a

connected set of plastic pipes standing perpendicular to the

floor. The recognition system creates a template for the

patterns these objects create from reflected sonar waves, and

can therefore answer which set of plastic pipes is being

viewed. “Object A” is a single pole, “Object B” is a group of

two poles, “Object C” is a group of three poles in a line, and

“Object D” is a group of four poles in a line. The poles are

always presented to the system such that the system as a “line

of sight” to each pole.

Manuscript received August 2, 2010. This material is based upon work

supported by the National Science Foundation under Grant No. 0755224..

P. B. Ellis is with the Department of Electrical and Computer Engineering,

Bradley University, Peoria, IL 61606 USA (e-mail: pellis@mail.bradley.edu).

T. Massoud is with the Department of Electrical and Computer

Engineering, University of Maryland, College Park, MD 20742 USA (e-mail:

tarek.massoud@gmail.com).

T. Horiuchi is with the Deptment of Electrical and Computer Engineering,

University of Maryland, College Park, MD 20742 USA (e-mail:

timmer@umd.edu).

Interpreting an echo can be difficult – many complex echoes

can arise from even the simplest situations. For instance, sound

waves can bounce any number of ways between the poles

before being detected by a receiver, making background

echoes and close-proximity reflections difficult to

differentiate. Such variability in the echoes makes it difficult to

predict the pattern to be detected. A useful general method of

addressing this variability is by using an artificial neural

network.

B. The Neural Network

A neural network adds a dimension of flexibility that allows

patterns that have complex and numerous relationships

between its variables to be recognized [3]. In the

interpretation of sound amplitude patterns, datasets can look

completely different when looking at the same object at

different angles, placing the object in a different environment,

or administering minute changes like placing the object farther

away. By learning the distinguishing features of the different

objects (presented at different distances) the neural network

can provide robust object recognition. A neural network can

offer a comparatively simpler, faster implementation. Most

importantly, it discovers the complex relationships between the

variables through a procedure called “training.”

The neural network is a single layer, feed-forward network

that uses “supervised learning” [2]. Figure 1 depicts the

network graphically.

Fig. 1 The Neural Network. The blue circles are the 60 neurons (Ni), the the

inputs (Xj) are multiplied by the weight matrix (Wij).

 There are 60 neurons in total, organized as four groups of

15 neurons. Each group is detects one of the four objects

across a span of 140.97 centimeters. Object A is detected by

the first 15 neurons, Object B is detected by the next 15

neurons, and so on. Each neuron is responsible for detecting its

assigned object within a specific (9.398 centimeter) detection

zone.

Pattern Memory and Analysis in Bat-Inspired

Echolocation Systems

Patrick B. Ellis, Tarek Massoud Student Member, IEEE, Timothy Horiuchi, Member, IEEE

N

MERIT BIEN 2010 Final Report

2

The training requires the acquisition of data. For the 15

neuron zones 3 sonar samples were taken for each of the

objects for a total of 180 datasets taken. Care was taken to be

sure that the samples were picked randomly within each

neuron zone. Randomness adds to the effectiveness of the

network by enhancing the robustness of detection.

The neural network was trained using a supervised learning

rule, meaning that the desired output pattern for the network

was explicitly provided [3]. 85% of the data taken were used

as training data and the remaining 15% were left as testing

data (“validation set”) for when the training is done. The

training “learns” the complex relationships of variables when

discovering the patterns of the objects in the sonar data.

The learning algorithm is called the Perceptron Learning

Rule [2]. The algorithm only works if the solution the network

is searching for is linearly separable, meaning there must exist

a line, plane, or hyperplane that separates the samples of the

different objects [3]. A simple example would be the two

input system shown in Figure 2. The two colors represent the

two categories to be differentiated. The original line is the

randomly picked line that separates the two objects. Through

adjustments to the weights and the bias, the line shifts to where

it divides the two categories. This visualization is simplistic

but can extend into much higher numbers of dimensions. The

basis of this algorithm lies in the fact that the coefficients of

the terms in the equations separating the objects directly

correlate with the weights in the Weight Matrix [2].

Fig 2. Simple Example: Two Input Neural Network. There are two

classes of data – red and blue. The Perceptron Learning Rule moves the

dividing line to a location in the two-dimensional space where it separates

the two classes.

Specifically, the training proceeds by first creating a random

weight and bias matrix and picking one of the training inputs

and applying it to the network. The network output is then

compared to the correct output and small adjustments (

Equation 1.1) are made to the weights and biases to reduce the

difference of the network output and desired output. If this is

done enough times and a solution exists, the weights and

biases will converge [2]. Gamma is a user-defined learning

rate that controls the magnitude of changes made to the weight

matrix and bias matrix with each input example.

 The network output, or answer matrix, is acquired by first

using Equation 1.2 and then taking the hyperbolic tangent of

that answer. This saturates the neuron outputs at around -1 or

+1, and as more training is done the outputs of the neurons

should converge towards these numbers.

XWW oldnew (1.1)

biasinputweightsanswer MMMM (1.2)

 A neuron fires in the following manner: (Figure 1) each

neuron reads the normalized values of the input matrix (X1, X2,

…) that comes from the sonar and then multiplies this matrix

by weight matrix (W1n, W2n, …) that has been previously

trained. The result is a 60x1 matrix whose values each

correspond to one of the neurons. This result is then added

with a bias matrix of the same dimension, also trained with the

weight matrix. The position of the highest value in the answer

matrix is the neuron that “wins,” which then indicates the

object being viewed. The bias matrix is an optional feature of

adding preciseness and maneuverability in the learning of the

pattern classes. Manswer is a 60x1 matrix, Mweight is a 60x256

matrix, Minput is a 256x1 matrix, and Mbias is a 60x1 matrix.

The „256‟ number correlates to the number of amplitude

measurements the sonar takes for each input vector of

amplitudes taken.

III. IMPLEMENTATION ONTO MATLAB®

MATLAB® was used to communicate with the sonar

(triggering and data acquisition) and graphed the incoming

amplitude signal of the sonar.

The first task before writing the neural network was to

determine whether the solution the network was searching for

was linearly separable. To reiterate, for this single layer neural

network to work there must exist a hyperplane that separates

the samples of the different objects. In two or three

dimensional problems this is easily portrayed, but in higher

dimensions it poses a tricky problem.

Figure 3 portrays how it was solved. A program in

MATLAB® was written profiling three neurons‟ outputted

power in three different ranges of equal length within the

140.97 centimeter range. The dots represent the data taken

and the power of that neuron in a particular range. Clearly

there exist planes that can separate the three clumps of data.

This then indicated that a solution could be found.

 The neural network code calculates all the neuron outputs

and the highest value found indicates the neuron that “fires,”

thereby telling

MERIT BIEN 2010 Final Report

3

Fig. 3 Linear Separability. The 3 axis represent 3 different power ranges

and the 3 clumps of data represent the 3 different neurons tested. The ability

to put planes to separate the clumps makes this neural network‟s solution a

linear separable one.

the system which object is present. The system was tested

after 1 million iterations of training on the reserved 15% of the

data (“validation set”) and live readings from the sonar itself.

Successful identification rates were around 75%. Figure 4

shows a sample screen output from MATLAB detailing the

neuron outputs and the detected object. It can clearly be seen

that Object A‟s first neuron is “firing.”

Further improvements for better identification were

postponed to allow time to implement the neural network on

an FPGA.

Fig. 4 MATLAB Screen for Object Identification. The plot shows all of the

Objects neurons clearly in the negative except for Object A Neuron 1 which is

“firing” to around 0.7.

 The learned weight matrix from the sonar data was is shown

in Figure 5. It can be seen that as the number of poles

increases, the width of the positive values increase with the

negative values surrounding them at all times. The increasing

distance is indicative of the given neuron‟s allocation to a

particular range. Further iterations and tweaking of the

learning rates of both the weight and bias matrices would lean

the positive values more towards 1 and the negative values to -

1.

Fig. 5 Colormap of the computed weight matrix. The rows of the weight

matrix correspond to neurons covering a range of distances for each of the

four objects.

IV. IMPLEMENTATION ONTO AN FPGA

A. Choosing the FPGA

Neural network literature notes an interesting connection

between parallel processing and the neurons in the human

brain. This system can be realized as parallel processing of the

60 neurons acting as small processors performing the same

simple calculations. The human brain can be seen as “a

parallel system of about 10
11

 processors” [2]. This propensity

for parallel computing lends a logical intuition to implement

the neural network on an FPGA.

The FPGA chosen was the Xilinx Spartan-3E XEM3005. It

comes with a USB 2.0 interface allowing fast FPGA-PC

communication as well as the software FrontPanel™, which

aids in interfacing and provides controllability of the design.

Figure 6 shows the desired system diagram. Initialization of

the system would be the loading of the weight and bias matrix

calculated in the MATLAB® neural network to the FPGA.

The sonar data would then be collected, normalized, and sent

to the FPGA by MATLAB® when desired. The FPGA would

then perform the calculations and perform real-time object

detection.

XILINX is the compiler for the VHDL program written and

FrontPanel™ is the software that allows communication to

implement or access the program design on the FPGA.

B. FrontPanel™

FrontPanel™ comes with a variety of features that need to

be accessed in order for communication with the XEM3005

FPGA to commence.

One FrontPanel™ feature are “FrontPanel HDL” modules

that are designed to be put within the FPGA hardware that

MERIT BIEN 2010 Final Report

4

Fig. 6 Interfacing Diagram. Communication to the board must go through

FrontPanel. Xilinx is the complier and MATLAB® is the API that controls

the sonar.

allows the communication with the FPGA. There are entities

within the HDL called “HDL Endpoints” that connect

FrontPanel™ components to signals within the design and

function as external pins [5]. One of these endpoints is called

a “wire,” which serves the purpose of transferring a signal state

into or out of the design [5].

“FrontPanel API” includes basic libraries that are provided

to give a programmer‟s interface that ultimately allows certain

PC applications access to FrontPanel™, and therefore the

FPGA. MATLAB® functions as the API [5].

In this system the requirement of a header file, library file,

and an extension file provided by FrontPanel must be placed in

the directory of the MATLAB® m-file calling the .bit file

produced by the Xilinx Compiler. The Xilinx compiler must

have okWireIn.ngc, okWireOut.ngc, as well as the

okHostInterfaceCore.ngc included in the directory in which the

.vhdl file is being saved. Without these included, the

compilation of the code will be successful but the mapping and

communication to the FPGA will not.

C. The Transfer of Matrix Values from MATLAB® to FPGA

 Preliminary programs were written as variants off of a

sample program “first” given by FrontPanel™ that tested

simple functionalities such as signed numbers, fractional

binary numbers, LED manipulation, and simple arithmetic.

The next step was controlling the FPGA through the API,

MATLAB®. Values were sent and retrieved through the wires

set up within the HDL of the program compiled in Xilinx. The

abilities to send decimal integer values from MATLAB® to

the FPGA through FrontPanel™ and retrieve binary numbers

from the FPGA were discovered. However, sending values

through wires were found to have certain boundaries.

MATLAB® was found unable to send negative or fractional

numbers, as they will only be processed as positive whole

numbers. On the FrontPanel side, sent and received signals

through wires must be Standard Logic Vectors, and therefore

unsigned and whole numbers.

 To complete the system in Figure 6 the first programming

step to be addressed was transferring the values calculated for

the weight matrix and bias matrix to the FPGA. Two

approaches were taken to resolve three complications. The

first complication was the calculated weight and bias matrix

values were occasionally negative and fractional, and wires

were found to be able to pass only positive whole integers.

The second was the difficulty of coordinating the transfer of

values in an iterative sequence with the parallel processing

nature of the FPGA and the von Neumann method of

processing in MATLAB®. The third was the method of

allocating the values within VHDL in a manner that kept

iterative value, which is needed for future calculations.

The first approach kept the fractional values. MATLAB®

interpreted the weight or bias matrix value as positive or

negative and sent a „0‟ or „1‟ through a wire to the FPGA. The

decimal portion of number was taken and converted to binary

with four bit values designated for the decimal portion in

MATLAB® and sent over in four wires to the FPGA. The

FPGA then concatenated the wires in a 2s complement fashion

and would store the values within „for-loops‟ that would wait

for particular signals/wires set in MATLAB® that would

decide whether the next iteration was ready to be saved.

The FPGA had three processes running for the weight, bias

matrix, and the input matrix. The „for-loops‟ would save

values into arrays of arrays functioning as two dimensional

arrays. This approach worked, but was found to be too

impractical and lost too much accuracy on the conversion of

the fractional numbers. The lack of support of fractional

number arithmetic within the libraries needed to be included in

the compilation of a FrontPanel™ coordinated program also

deterred this approach. Furthermore, the use of „for-loops‟

with the use of arrays of arrays allocating the values made

synthesizing extremely slow and consuming a lot of space.

Synthesis could take up to an hour and a half when only

synthesizing array of arrays that were cut down from their true

size for quicker testing [1]. Synthesis is a stage in Xilinx that

generates and optimizes the logical or digital form of the HDL

code [1].

The second approach used one dimensional arrays without

„for-loops‟ to store the values. Instead of „for-loops‟, the

iteration number was controlled by a „for-loop‟ in MATLAB®

which sequentially sent values to the FPGA. The iteration

number in the „for-loop‟ within MATLAB® was sent in a wire

to the FPGA, converted to an integer, and simply used as the

iterative integer to assign the correct place in the one

dimensional arrays. The weight matrix, previously a 60x256

matrix was converted into a 1x15360 one dimensional array,

“15360” being the product of 60 and 256. Fractional numbers

were replaced by multiplying the numbers by 1000. This

approach was successful, and the matrices were successfully

loaded. The design was also significantly more conducive to

synthesizing digital logic as array of arrays are difficult to

synthesize [1]. As a result compilation time drastically

improved and more accuracy than the fractional storing system

MERIT BIEN 2010 Final Report

5

was implemented.

 For all versions, when values come into the FPGA, they

come in from MATLAB® as Standard Logic Vectors and are

immediately converted to 2s complement if the sign flag (a

wire) has been set as negative. They are then concatenated

and stored in their appropriate places.

C. Calculating the Neuron Outputs on the FPGA

A fourth process is delegated the role of doing the

calculation of the answer matrix. The input matrix has been

normalized by MATLAB® to be 0s and 1s, in contrast to the

1s and -1s the input matrix was normalized to in the

MATLAB® implementation. This allowed the ability to

simply add the portions of the weight vector together when its

corresponding Input Matrix iteration was a „1‟ and then add

the bias value. This method was tested with a known input

vector and only two rows of the Weight Matrix. The outputs,

when retrieved by MATLAB® were correct therefore

demonstrating full ability of the FPGA to host the neural

network. However, when making the Weight Matrix its true

60x256 size the FPGA was unable to compile as the program

exceeded its memory capabilities.

V. CONCLUSION

A successful MATLAB® neural network was completed in

its entirety. In fulfilling the ultimate goal of achieving the

same success on an FPGA, significant strides were made. The

interfacing between the sonar, software, and hardware depicted

in Figure 6 was established and well documented, thereby

establishing solid groundwork for future work. The weight,

input, and bias matrices were all loaded successfully onto the

FPGA and the full functionality of the neural network was

demonstrated on a small scale.

The size of the current FPGA chip (1,200,000 gates) is,

however, insufficient to implement the whole system with all

the neurons in place.

VI. FUTURE WORK

The 60 neurons and the 256 samples per input vector are

excessive in number and can be reduced. This will help

alleviate the storage problem, but an in-depth look at the way

arrays and „for-loops‟ are synthesized in the Xilinx compiler is

needed. The functionality needed to complete the neural

network on the FPGA has been demonstrated, but optimization

of how the Xilinx compiler assigns hardware to the VHDL

code still remains.

ACKNOWLEDGMENT

I would like to thank all the assistance and guidance I have

received from my mentors Professor Horiuchi and Tarek

Massoud, the MERIT program, the Computational

Sensormotor Lab, and the National Science Foundation.

REFERENCES

[1] J. Pick, VHDL Technique, Experiments, and Caveats. New York:

McGraw-Hill, Inc, 1995, pgs 187, 225-226, 234-233, 367-369, 375

[2] J. Hertz, A. Krogh, R. G. Palmer, Introduction to the Theory of Neural

Computation. Redwood, CA: Addison-Wesley Publishing Co, 1991, pgs

1-20, 89-111.

[3] K. Mehrotra, C. K. Mohan, S. Ranka, Elements of Artificial Neural

Networks. Cambridge, MA: Bradford Books, 2000, pgs 1-62

[4] A. N. Popper, R. R. Fay, Hearing by Bats. New York: Springer-Verlag,

1995, 1-37, 481-494.

[5] Opal Kelly Admins. “tutorial[Opal Kelly Wiki],” Feb 28, 2007. [online]

Available: http://wiki.opalkelly.com/tutorial/ [July 3, 2010].

