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Abstract—Bats are well known for navigating the world using 

a sense that is completely foreign to human beings – echolocation.  

Investigating echolocation may provide rich opportunities to 

influence the technologies of today and the future.  We are using a 

sonar-based system modeled on bat echolocation to demonstrate a 

pattern recognition neural network on a field-programmable gate 

array (FPGA) board.  The system learns to use sonar signals to 

identify several specific objects presented at different distances. 

The object identification provided by this system will be used in a 

neural model of animal navigation currently being investigated. 

 
Index Terms—Echolocation, Neural Networks, Interfacing, 

VHDL 

 

I. INTRODUCTION 

ATURE often finds elegant solutions to the problems 

scientists and engineers face in building artificial neural 

systems. The use of acoustic echoes to detect objects (i.e., 

sonar) is one remarkable example found in the echolocating 

bat. By observing the temporal pattern of echoes made by 

different objects, an object recognition system can be designed 

for detecting landmarks in the environment [4]. 

II. BACKGROUND 

A. The Set-Up Configuration 

In this project, a set of simple objects were created that 

produce distinguishable patterns of echoes.  Each object is a 

connected set of plastic pipes standing perpendicular to the 

floor. The recognition system creates a template for the 

patterns these objects create from reflected sonar waves, and 

can therefore answer which set of plastic pipes is being 

viewed.  “Object A” is a single pole, “Object B” is a group of 

two poles, “Object C” is a group of three poles in a line, and 

“Object D” is a group of four poles in a line.  The poles are 

always presented to the system such that the system as a “line 

of sight” to each pole. 
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Interpreting an echo can be difficult – many complex echoes 

can arise from even the simplest situations. For instance, sound 

waves can bounce any number of ways between the poles 

before being detected by a receiver, making background 

echoes and close-proximity reflections difficult to 

differentiate. Such variability in the echoes makes it difficult to 

predict the pattern to be detected.  A useful general method of 

addressing this variability is by using an artificial neural 

network. 

B. The Neural Network 

A neural network adds a dimension of flexibility that allows 

patterns that have complex and numerous relationships 

between its variables to be recognized [3].  In the 

interpretation of sound amplitude patterns, datasets can look 

completely different when looking at the same object at 

different angles, placing the object in a different environment, 

or administering minute changes like placing the object farther 

away. By learning the distinguishing features of the different 

objects (presented at different distances) the neural network 

can provide robust object recognition. A neural network can 

offer a comparatively simpler, faster implementation.  Most 

importantly, it discovers the complex relationships between the 

variables through a procedure called “training.” 

The neural network is a single layer, feed-forward network 

that uses “supervised learning” [2]. Figure 1 depicts the 

network graphically. 

 

  
Fig. 1   The Neural Network.  The blue circles are the 60 neurons (Ni), the the 

inputs (Xj) are multiplied by the weight matrix (Wij). 

 

 There are 60 neurons in total, organized as four groups of 

15 neurons.  Each group is detects one of the four objects 

across a span of 140.97 centimeters.  Object A is detected by 

the first 15 neurons, Object B is detected by the next 15 

neurons, and so on. Each neuron is responsible for detecting its 

assigned object within a specific (9.398 centimeter) detection 

zone.   
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The training requires the acquisition of data.  For the 15 

neuron zones 3 sonar samples were taken for each of the 

objects for a total of 180 datasets taken. Care was taken to be 

sure that the samples were picked randomly within each 

neuron zone. Randomness adds to the effectiveness of the 

network by enhancing the robustness of detection. 

The neural network was trained using a supervised learning 

rule, meaning that the desired output pattern for the network 

was explicitly provided [3].  85% of the data taken were used 

as training data and the remaining 15% were left as testing 

data (“validation set”) for when the training is done.  The 

training “learns” the complex relationships of variables when 

discovering the patterns of the objects in the sonar data. 

The learning algorithm is called the Perceptron Learning 

Rule [2].  The algorithm only works if the solution the network 

is searching for is linearly separable, meaning there must exist 

a line, plane, or hyperplane that separates the samples of the 

different objects [3].  A simple example would be the two 

input system shown in Figure 2.  The two colors represent the 

two categories to be differentiated.  The original line is the 

randomly picked line that separates the two objects. Through 

adjustments to the weights and the bias, the line shifts to where 

it divides the two categories. This visualization is simplistic 

but can extend into much higher numbers of dimensions.  The 

basis of this algorithm lies in the fact that the coefficients of 

the terms in the equations separating the objects directly 

correlate with the weights in the Weight Matrix [2]. 

 

 
Fig 2.     Simple Example: Two Input Neural Network.  There are two 

classes of data – red and blue.  The Perceptron Learning Rule moves the 

dividing line to a location in the two-dimensional space where it separates 

the two classes. 

 

Specifically, the training proceeds by first creating a random 

weight and bias matrix and picking one of the training inputs 

and applying it to the network.  The network output is then 

compared to the correct output and small adjustments ( 

Equation 1.1) are made to the weights and biases to reduce the 

difference of the network output and desired output.  If this is 

done enough times and a solution exists, the weights and 

biases will converge [2].  Gamma is a user-defined learning 

rate that controls the magnitude of changes made to the weight 

matrix and bias matrix with each input example. 

  The network output, or answer matrix, is acquired by first 

using Equation 1.2 and then taking the hyperbolic tangent of 

that answer.  This saturates the neuron outputs at around -1 or 

+1, and as more training is done the outputs of the neurons 

should converge towards these numbers.  
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 A neuron fires in the following manner:  (Figure 1) each 

neuron reads the normalized values of the input matrix (X1, X2, 

… ) that comes from the sonar and then multiplies this matrix 

by weight matrix (W1n, W2n, … ) that has been previously 

trained.  The result is a 60x1 matrix whose values each 

correspond to one of the neurons.  This result is then added 

with a bias matrix of the same dimension, also trained with the 

weight matrix.  The position of the highest value in the answer 

matrix is the neuron that “wins,” which then indicates the 

object being viewed.  The bias matrix is an optional feature of 

adding preciseness and maneuverability in the learning of the 

pattern classes.  Manswer is a 60x1 matrix, Mweight is a 60x256 

matrix, Minput is a 256x1 matrix, and Mbias is a 60x1 matrix.  

The „256‟ number correlates to the number of  amplitude 

measurements the sonar takes for each input vector of 

amplitudes taken. 

 

III. IMPLEMENTATION ONTO MATLAB® 

MATLAB® was used to communicate with the sonar 

(triggering and data acquisition) and graphed the incoming 

amplitude signal of the sonar.   

The first task before writing the neural network was to 

determine whether the solution the network was searching for 

was linearly separable.  To reiterate, for this single layer neural 

network to work there must exist a hyperplane that separates 

the samples of the different objects. In two or three 

dimensional problems this is easily portrayed, but in higher 

dimensions it poses a tricky problem.   

Figure 3 portrays how it was solved.  A program in 

MATLAB® was written profiling three neurons‟ outputted 

power in three different ranges of equal length within the 

140.97 centimeter range.  The dots represent the data taken 

and the power of that neuron in a particular range.  Clearly 

there exist planes that can separate the three clumps of data.  

This then indicated that a solution could be found.  

 The neural network code calculates all the neuron outputs 

and the highest value found indicates the neuron that “fires,” 

thereby telling  
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Fig. 3     Linear Separability.   The 3 axis represent 3 different power ranges 

and the 3 clumps of data represent the 3 different neurons tested.  The ability 

to put planes to separate the clumps makes this neural network‟s solution a 

linear separable one. 

 

the system which object is present.  The system was tested 

after 1 million iterations of training on the reserved 15% of the 

data (“validation set”) and live readings from the sonar itself.  

Successful identification rates were around 75%.  Figure 4 

shows a sample screen output from MATLAB detailing the 

neuron outputs and the detected object.  It can clearly be seen 

that Object A‟s first neuron is “firing.”  

Further improvements for better identification were 

postponed to allow time to implement the neural network on 

an FPGA. 

 
Fig. 4     MATLAB Screen for Object Identification.  The plot shows all of the 

Objects neurons clearly in the negative except for Object A Neuron 1 which is 

“firing” to around 0.7. 

 

 The learned weight matrix from the sonar data was is shown 

in Figure 5.  It can be seen that as the number of poles 

increases, the width of the positive values increase with the 

negative values surrounding them at all times.  The increasing 

distance is indicative of the given neuron‟s allocation to a 

particular range.  Further iterations and tweaking of the 

learning rates of both the weight and bias matrices would lean 

the positive values more towards 1 and the negative values to -

1. 

  

 
Fig. 5     Colormap of the computed weight matrix.  The rows of the weight 

matrix correspond to neurons  covering a range of distances for each of the 

four objects. 

 

IV. IMPLEMENTATION ONTO AN FPGA 

A.  Choosing the FPGA 

Neural network literature notes an interesting connection 

between parallel processing and the neurons in the human 

brain.  This system can be realized as parallel processing of the 

60 neurons acting as small processors performing the same 

simple calculations.  The human brain can be seen as “a 

parallel system of about 10
11

 processors” [2].  This propensity 

for parallel computing lends a logical intuition to implement 

the neural network on an FPGA.   

The FPGA chosen was the Xilinx Spartan-3E XEM3005.  It 

comes with a USB 2.0 interface allowing fast FPGA-PC 

communication as well as the software FrontPanel™, which 

aids in interfacing and provides controllability of the design. 

Figure 6 shows the desired system diagram.  Initialization of 

the system would be the loading of the weight and bias matrix 

calculated in the MATLAB® neural network to the FPGA. 

The sonar data would then be collected, normalized, and sent 

to the FPGA by MATLAB® when desired.  The FPGA would 

then perform the calculations and perform real-time object 

detection. 

XILINX is the compiler for the VHDL program written and 

FrontPanel™ is the software that allows communication to 

implement or access the program design on the FPGA.   

 

B.  FrontPanel™ 

FrontPanel™  comes with a variety of features that need to 

be accessed in order for communication with the XEM3005 

FPGA to commence.   

One FrontPanel™ feature are “FrontPanel HDL” modules 

that are designed to be put within the FPGA hardware that  
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Fig. 6     Interfacing Diagram.  Communication to the board must go through 

FrontPanel.  Xilinx is the complier and MATLAB® is the API that controls 

the sonar. 

 

allows the communication with the FPGA.  There are entities 

within the HDL called “HDL Endpoints” that connect 

FrontPanel™ components to signals within the design and 

function as external pins [5].  One of these endpoints is called 

a “wire,” which serves the purpose of transferring a signal state 

into or out of the design [5].   

“FrontPanel API” includes basic libraries that are provided 

to give a programmer‟s interface that ultimately allows certain 

PC applications access to FrontPanel™, and therefore the 

FPGA.  MATLAB® functions as the API [5]. 

In this system the requirement of a header file, library file, 

and an extension file provided by FrontPanel must be placed in 

the directory of the MATLAB® m-file calling the .bit file 

produced by the Xilinx Compiler.  The Xilinx compiler must 

have okWireIn.ngc, okWireOut.ngc, as well as the 

okHostInterfaceCore.ngc included in the directory in which the 

.vhdl file is being saved.  Without these included, the 

compilation of the code will be successful but the mapping and 

communication to the FPGA will not. 

 

C.  The Transfer of Matrix Values from MATLAB® to FPGA 

 

 Preliminary programs were written as variants off of a 

sample program “first” given by FrontPanel™ that tested 

simple functionalities such as signed numbers, fractional 

binary numbers, LED manipulation, and simple arithmetic.  

The next step was controlling the FPGA through the API, 

MATLAB®.  Values were sent and retrieved through the wires 

set up within the HDL of the program compiled in Xilinx. The 

abilities to send decimal integer values from MATLAB® to 

the FPGA through FrontPanel™ and retrieve binary numbers 

from the FPGA were discovered.  However, sending values 

through wires were found to have certain boundaries.  

MATLAB® was found unable to send negative or fractional 

numbers, as they will only be processed as positive whole 

numbers.  On the FrontPanel side, sent and received signals 

through wires must be Standard Logic Vectors, and therefore 

unsigned and whole numbers. 

 To complete the system in Figure 6 the first programming 

step to be addressed was transferring the values calculated for 

the weight matrix and bias matrix to the FPGA.  Two 

approaches were taken to resolve three complications.  The 

first complication was the calculated weight and bias matrix 

values were occasionally negative and fractional, and wires 

were found to be able to pass only positive whole integers.  

The second was the difficulty of coordinating the transfer of 

values in an iterative sequence with the parallel processing 

nature of the FPGA and the von Neumann method of 

processing in MATLAB®.  The third was the method of 

allocating the values within VHDL in a manner that kept 

iterative value, which is needed for future calculations. 

The first approach kept the fractional values.  MATLAB® 

interpreted the weight or bias matrix value as positive or 

negative and sent a „0‟ or „1‟ through a wire to the FPGA.  The 

decimal portion of number was taken and converted to binary 

with four bit values designated for the decimal portion in 

MATLAB® and sent over in four wires to the FPGA.  The 

FPGA then concatenated the wires in a 2s complement fashion 

and would store the values within „for-loops‟ that would wait 

for particular signals/wires set in MATLAB® that would 

decide whether the next iteration was ready to be saved.    

The FPGA had three processes running for the weight, bias 

matrix, and the input matrix.  The „for-loops‟ would save 

values into arrays of arrays functioning as two dimensional 

arrays.  This approach worked, but was found to be too 

impractical and lost too much accuracy on the conversion of 

the fractional numbers.  The lack of support of fractional 

number arithmetic within the libraries needed to be included in 

the compilation of a FrontPanel™ coordinated program also 

deterred this approach.  Furthermore, the use of „for-loops‟ 

with the use of arrays of arrays allocating the values made 

synthesizing extremely slow and consuming a lot of space.  

Synthesis could take up to an hour and a half when only 

synthesizing array of arrays that were cut down from their true 

size for quicker testing [1].  Synthesis is a stage in Xilinx that 

generates and optimizes the logical or digital form of the HDL 

code [1]. 

The second approach used one dimensional arrays without 

„for-loops‟ to store the values.  Instead of „for-loops‟, the 

iteration number was controlled by a „for-loop‟ in MATLAB® 

which sequentially sent values to the FPGA.  The iteration 

number in the „for-loop‟ within MATLAB® was sent in a wire 

to the FPGA, converted to an integer, and simply used as the 

iterative integer to assign the correct place in the one 

dimensional arrays.  The weight matrix, previously a 60x256 

matrix was converted into a 1x15360 one dimensional array, 

“15360” being the product of 60 and 256.  Fractional numbers 

were replaced by multiplying the numbers by 1000.  This 

approach was successful, and the matrices were successfully 

loaded. The design was also significantly more conducive to 

synthesizing digital logic as array of arrays are difficult to 

synthesize [1].  As a result compilation time drastically 

improved and more accuracy than the fractional storing system 
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was implemented.   

 For all versions, when values come into the FPGA, they 

come in from MATLAB® as Standard Logic Vectors and are 

immediately converted to 2s complement if the sign flag (a 

wire) has been set as negative.  They are then concatenated 

and stored in their appropriate places.   

 

C.  Calculating the Neuron Outputs on the FPGA 

A fourth process is delegated the role of doing the 

calculation of the answer matrix.  The input matrix has been 

normalized by MATLAB® to be 0s and 1s, in contrast to the 

1s and -1s the input matrix was normalized to in the 

MATLAB® implementation.  This allowed the ability to 

simply add the portions of the weight vector together when its 

corresponding Input Matrix iteration was a „1‟ and then add 

the bias value.  This method was tested with a known input 

vector and only two rows of the Weight Matrix.  The outputs, 

when retrieved by MATLAB® were correct therefore 

demonstrating full ability of the FPGA to host the neural 

network.  However, when making the Weight Matrix its true 

60x256 size the FPGA was unable to compile as the program 

exceeded its memory capabilities. 

V. CONCLUSION 

A successful MATLAB® neural network was completed in 

its entirety.  In fulfilling the ultimate goal of achieving the 

same success on an FPGA, significant strides were made.  The 

interfacing between the sonar, software, and hardware depicted 

in Figure 6 was established and well documented, thereby 

establishing solid groundwork for future work. The weight, 

input, and bias matrices were all loaded successfully onto the 

FPGA and the full functionality of the neural network was 

demonstrated on a small scale.   

The size of the current FPGA chip (1,200,000 gates) is, 

however, insufficient to implement the whole system with all 

the neurons in place.   

 

VI. FUTURE WORK 

The 60 neurons and the 256 samples per input vector are 

excessive in number and can be reduced.  This will help 

alleviate the storage problem, but an in-depth look at the way 

arrays and „for-loops‟ are synthesized in the Xilinx compiler is 

needed.  The functionality needed to complete the neural 

network on the FPGA has been demonstrated, but optimization 

of how the Xilinx compiler  assigns hardware to the VHDL 

code still remains.    
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