
MERIT BIEN 2010 1

Visual mini-robot identification, tracking and control
Ken Tossell, Andy Hammond, Eduardo Arvelo, Nuno C. Martins

Abstract—In order to facilitate motion control for a swarm
of inch-scale robots that have limited sensing, computation and
communication capabilities, we have designed a software tool that
locates and tracks robots using overhead imagery. The software
follows robots as they move about a planar surface, providing
position information suitable for use in centralized or cooperative
motion planning.

Index Terms—Image motion analysis, mobile robot motion-
planning, robot vision systems.

I. INTRODUCTION

ADVANCEMENTS in small-scale fabrication technology
have made possible a new class of ultra-miniature robots.

These microscale robots show promise in applications such as
search and rescue, infrastructure monitoring, and medicine.
Microrobots are particularly useful components in search
applications because of their ability to gain access to denied
environments inconspicuously. We anticipate the emergence of
microscale medical robots that would be capable of minimal-
risk microsurgery and medication delivery.

Our work is part of a larger-scale testbed for research
into microrobot control and coordination algorithms. We have
designed a tracking system and low-level control software for
inch-scale robots (“bristle-bots”1); it is the central component
of the testbed, which will be used to evaluate algorithms that
are intended for eventual implementation on microscale legged
robots.

Our group is investigating robot-control systems of various
types, including both autonomous and centrally controlled
microrobots, with environmental and positional information
coming from a central, fixed-position observer (e.g., camera-
based methods, medical imaging, or GPS and other fixed-
reference-point geolocation techniques), from the robots them-
selves (e.g., intraswarm radio distance sensing based on time
difference of arrival or auditory short-range robot-robot iden-
tification), or using a combination of single-source and agent-
supplied data.

A. Motivation

The inspiration to design a visual tracking system for
these robots arose from a need to be able to locate and

Received August 6, 2010. This material is based upon work supported by
the National Science Foundation under grants 0931878 and 0755224.

Ken Tossell is a senior computer science student at the University of
Maryland (e-mail: ktossell@umd.edu).

Andy Hammond is a senior electrical engineering student at the University
of Maryland (e-mail: ahammond@umd.edu).

1Bristle-bots are small robots made using toothbrush heads and vibrating
motors. When a motor vibrates, it shifts the robot downward, and the rear-
angled bristles bend, forcing the robot away from the bristle-ground intersec-
tion and causing the body of the robot to move forward. Using independent
left-side and right-side motors, each attached to its own toothbrush head, the
bristle-bots are able to move in any forward direction.

follow microrobots without relying greatly on the robots’
assistance in gathering motion and position data. Once the
robots were located and identified, visual tracking data would
be used in control algorithms to coordinate a fleet of robots.
The tracking system would provide position information with
respect to a fixed reference frame; before sending commands
and neighbor-position data to a robot, the software would
have the option of translating all coordinates into a robot-
centric coordinate system, simplifying onboard computation
for the robots. This visual system, unlike some currently
employed tracking mechanisms [1], would not require active
participation by the robots to a large extent. This would serve
to reduce power consumption and requirements for computa-
tional power, which could be channeled to other activities that
the robot would have to carry out. The software presented in
this paper meets the aforementioned specifications by locating
robots in a video stream, determining each robot’s unique
identity using physical or behavioral observation, and track-
ing individual robots’ motion while maintaining an accurate
estimate of each robot’s position and orientation.

B. Testbed

The bristle-bot testbed consists of a 5 m2 platform, an
overhead camera, and a central computer, which is connected
to each of the robots wirelessly. The platform’s flat, glossy
surface allows the robots to move about freely, with a minimal
number of disruptive physical and visual artifacts. The camera
captures 38 1-megapixel color images per second, with a
resolution of 6 pixels per cm. The main computer is a Core i7-
based machine with an NVIDIA GeForce graphics processing
unit and 12 GiB of system memory.

During initial vision development, we have used toy
“robots” that move in a fashion similar to bristle-bots but
offer no control capabilities. The vision subsystem is tuned to
follow these devices as they move randomly on the platform.
We expect to find that motion models developed for these toy
robots will be applicable to controllable bristle-bots.

C. System Overview

The centralized portion of the system has been separated
into three primary components: vision, tracking, and control
(Fig. 1). Each component subscribes to and publishes one
primary data stream; additionally, each component maintains
a cyclic data sharing relationship with the succeeding part of
the system.

The software has been developed using ROS2, which pro-
vides drivers for cameras and other devices, support for

2ROS (Robot Operating System) is an open-source meta-operating system
for mobile robotics: http://www.ros.org/



MERIT BIEN 2010 2

Camera

Vision Tracking Control

Robots

Position
Hints

Observations
(x, y, θ, h)

Position
Estimates

Control
Parameters

Motion
Commands

Motion
Status

Fig. 1. Main System Components

interprocess communication, and tools for image processing
[2].

II. VISION SUBSYSTEM

We use a two-part vision process, first performing a full-
image search for regions of likely robot activity by finding
moving objects. Once this list of regions has been compiled,
we combine it with a list of regions where robots are known
to have existed recently. The second vision step – local
inspection within each of the regions – finds individual robots,
delivering precise position, orientation and color information
to the tracking subsystem.

A. Global Search

A first-level processor identifies regions of interest using a
combination of short- and long-term motion detection [3]. The
software maintains a slow-adapting visual model of the plat-
form; this model is used to find regions whose appearances are
historically unusual. The system takes its collected knowledge
of robot positions into account when it updates the model, so
robots that have come to a stop will not be reabsorbed into the
background model. The software creates a map of the pixels
that meet a threshold value for their color difference from the
background model and finds connected components, which
represent moving objects. Components that are significantly
too large or too small to be robots are ignored in order to avoid
triggering the small-area image processor on camera noise
or observed operator intervention. The long-term background
model and foreground separation appear in Fig. 2 and are
described by the following equations:

Bc
t (x, y) =


Bc

t−1(x, y) + 1 if Bc
t (x, y) > Bc

t−1(x, y)

Bc
t−1(x, y) if Bc

t (x, y) = Bc
t−1(x, y)

Bc
t−1(x, y)− 1 if Bc

t (x, y) < Bc
t−1(x, y)

(1)
∀ c ∈ {red, green, blue}; 0 <= Bc

t (x, y) <= 255.

slowForeground(x, y) =

{
1 if

∑
c∈{r,g,b}

|Bc
t (x, y)| ≥ k

0 otherwise
(2)

where B is the three-color slow-adapting background model,
k is a constant threshold, and (x, y) is the location of a pixel
in the image.

(a) Initial image (b) Foreground fades (c) Fully separated

Fig. 2. Updating the long-term background model, beginning at t = 0

The image is next processed with a short-term motion
detector, finding image positions whose color values have
shown significant changes since the previous frame. Any long-
term foreground blob (an area of pixels that do not match
the slow-adapting background model) that does not contain
enough short-term foreground pixels will be ignored. This
keeps the system from searching repeatedly in a region that
neither matches the long-term background nor contains any
robots, such as a region before the introduction, or after the
removal, of an obstacle or an operator’s arm.

The software creates a list of square blob-bounding regions
big enough to ensure that each region contains an entire robot.
This list – the list of observed regions – is combined with
the list of regions enclosing the estimated locations of known
robots – the list of predicted regions – to form a set of areas
that need further testing. The system combines regions with
significant overlap in order to avoid having a robot lie along
a region boundary, where it is likely to be misdetected.

B. Local Search

The second-level processor receives the list of regions;
it scans each region individually, searching for individual
robots. The early-stage robots appear essentially as dark near-
rectangular shapes, in contrast with the white background. In
order to avoid building a recognition system that is overly
adapted to these temporary robots, we have used a simple pixel
intensity filter. For each region, we calculate the mean µ and
variance σ2 of grayscale intensity (including non-robot pixels),
and we take the pixels that have intensity at most µ− 1.5σ as
positive pixels (Fig. 3). This threshold is a heuristic value that
has been found to be effective. To remove stray dark pixels,
we perform an erosion operation on the resulting bitmap. A
dilation follows, restoring the original bitmap less stray pixels.

Another round of connected component analysis separates
the robots when more than one robot appears within a re-
gion. The software finds each blob’s average color in RGB
color space and stores the hue of that color. It continues by
determining the convex hull for each labeled component and
finding minimal bounding rectangles for those enclosures 4.

Any rectangle that fits within a predefined range for propor-
tion and area is accepted as a robot. The vision system collects
the robots and passes them to the tracking and identification
system in the form (x, y, θ, h), where x and y represent the
center point of the robot, θ is an angle parallel to the longer



MERIT BIEN 2010 3

Fig. 3. Intensity-based local search.

axis (either forward or backward), and h is the average hue in
radians.

III. TRACKING SUBSYSTEM

The tracking subsystem uses information from the vision
system together with internal mathematical models to answer
two questions: Given a robot (x, y, θ, h), how has it moved
since the previous frame (or further back in the recent past)?
And, knowing what path that robot has followed, what is the
robot’s identity?

We split this problem into two parts. First, we maintain
a position estimate for each robot. At present, we estimate a
robot’s position using an (x, y, θ)-tracking Kalman filter. Once
we learn more about the robot’s motion characteristics, we will
expand this so that the system might accurately reflect the
nonlinear motion that the bristle-bots are known to employ.
This future estimator will track roughly the values listed in
Fig. 5, along with their first and second derivatives.

A. Matching From Frame To Frame

Our most basic matching task is the job of determining a
mapping from the set of robots observed in one video frame to
the corresponding robots in the next frame. For this, we use an
algorithm (Algorithm 1) that weighs Euclidean distance and
hue variation to construct the desired mapping while marking
new robots (such as those robots that are moving for the first
time) and missing robots (those that were removed from the

Fig. 4. Convex hull and bounding rectangle based on bitmap (Fig. 3).

m

m

π - Θ

x

y

v ϕ

Fig. 5. Possible model of bristle-bot state variables

test area and any robots missed due to failure of the vision
subsystem).

Initial tests have shown that this matching procedure yields
correct results in conditions ranging from ideal configurations
(large distances between robots) to collisions. In the latter case
(and in non-colliding close passes), the Kalman filter’s resis-



MERIT BIEN 2010 4

tance to abrupt change, combined with color differentiation,
most often enables the tracking subsystem to follow multiple
robots through a collision without any identity swapping.

B. Matching Virtual Robots To Real-World Robots

Robots may appear or vanish at any time through operator
intervention or due to vision system error, but the true set of
robots – the robots that are radio-connected and known to the
controller – does not change. Our software must handle any
situation in which there is a subset of robots that do not have
a bidirectional virtual-to-physical mapping. Since the tracking
subsystem typically knows nothing about the state of a robot
when that robot first appears, it must use a method, such as one
of the procedures described below, to determine with certainty
which modeled robot corresponds to a particular real-world
robot.

1) Static Matching: In the static approach, the tracking
system cooperates with the vision system once again, using
visual cues to uniquely identify unmapped robots. The average
color of a robot is one such cue; other markings and patterns
would assist this process. The major advantage of this type of
matching procedure is the possibility of running it on every
frame, constantly confirming or revising the virtual-to-physical
map. The most basic implementations would severely limit
the number of usable robots, however, due to the limitation in
easily distinguishable colors and patterns. Additionally, this
requires a predefined list of robots; new agents cannot as
easily join the swarm. We have implemented a basic form
of color-based identification using a five-entry robot list and
have encountered only infrequent mismatch, lasting no longer
than a few frames.

2) Dynamic Matching: For dynamic matching, future ver-
sions of the tracking and control subsystems will coordinate
to identify any unmapped robots through a process of elimina-
tion. The software would instruct each of the robots to go in a
particular direction – either right (group R) or left (group L) –
for a period of time. After visually observing which unmapped
robots had moved in which direction, it would have half of the
left-commanded robots go left (LL), with the other half going
right (LR). The right-commanded robots would undergo the
same procedure. The software would continue to divide the
groups of unmapped controllable robots until it had reduced
each group to a single robot (LRRL = 01102 = subject #6)
and become certain of which internal robot model would map
to which physical robot. This would normally complete an
initial identification procedure for a field of n robots with t-
second observation periods within t ∗ log2(n) seconds.

We will also investigate two other types of dynamic match-
ing. In one, the robots themselves would choose a direction
of motion, sending the chosen angles back to the tracker and
controller, which would narrow the set of possible mappings
as above. In another, the software would stop all robots on the
field and then instruct one robot to move at a time.

IV. CONTROL SUBSYSTEM

We are in the process of developing on-robot software for
low-level motion control. We plan to use the visual tracking

system to evaluate the robots’ motion across the full range of
motor speeds; we will use the resulting information to find an
accurate transformation between motion goals (v, φ) (see Fig.
5) and motor speeds, controlled as duty cycles (DL, DR).

The bristle-bots will communicate with the control machine
using a short-range wireless link, sending status information
and receiving messages such as direct motion commands
(v, φ), robot location updates (position of a particular robot
or of all robots {(x, y, θ)}), navigation goals (x, y) (to be
met using on-robot processing of centrally collected self- and
neighbor-position information) and paths for the robots to
follow (e.g., lists of spline curves and velocity functions).

Future work in the area of controls will include the devel-
opment of swarm motion planning software using receding
horizon control.

REFERENCES

[1] Youngjoon Han, Moonyong Han, Hyungtae Cha, Mincheol Hong, and
Hernsoo Hahn, “Tracking of a moving object using ultrasonic sensors
based on a virtual ultrasonic image,” Robotics and Autonomous Systems,
vol. 36, no. 1, 31 July 2001, pp. 11-19.

[2] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs, R.
Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating System,”
in International Conference on Robotics and Automation, ser. Open-
Source Software workshop, 2009.

[3] S.-C. S. Cheung, C. Kamath, “Robust background subtraction with fore-
ground validation for urban traf.c video,” EURASIP Journal on Applied
Signal Processing, 2005:14, 2330.2340.



MERIT BIEN 2010 5

APPENDIX

Algorithm 1 Robot-robot mapping
New← ∅
Unmatched← Observed
while Unmatched 6= ∅ do
obs← remove from Unmatched {randomized}
best match← ♦
best distance← 1002 {at most 100px away}
for i = 0 to len(Known) −1 do
candidate← Known[i]
est← posn est candidate {Kalman filter}
distance ← (obs.x − est.x)2 + (obs.y − est.y)2

{probability that the candidate would have this color,
constructed using difference from running average or
using histogram under KDE:}
distance← distance/(prob color candidate obs.hue)
if distance < best distance then

if candidate.best obs == ♦ or
candidate.best dist ≥ distance then
best match← candidate
best distance← distance

end if
end if

end for
if best match 6= ♦ then

if best match.best obs 6= ♦ then
add to Unmatched best match.best obs {send
suboptimal match back}

end if
best match.best obs← obs
best match.best dist← best distance

else
add to New obs {obs is a new robot}

end if
end while


