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Abstract— The Speech Communication Lab has 

developed a speech extraction algorithm that is able 

to remove noise from speech signals, even when the 

noise is the speech of a competing speaker.  The 

algorithm was previously tested with normal hearing 

listeners and yielded positive results.  Now the 

algorithm will be tested for hearing impaired 

listeners to see if it increases the intelligibility of noisy 

speech for hearing-aid users.  Because of the 

properties of hearing loss and hearing-aids, the tests 

may not produce the same results for hearing 

impaired listeners as they did for normal hearing 

listeners.  The algorithm will also be analyzed to see 

how well it preserves the properties of the original 

speech signal.  The results of these tests and analyses 

will be put together to see if this algorithm has a 

potential use in hearing-aids. 

 

Index Terms—Speech extraction, speech 

segregation, hearing-aids 

 

I.   INTRODUCTION 

earing-aids have undergone many improvements 

and modifications since their creation, but their 

effectiveness in helping the hearing-impaired understand 

speech in noisy environments still has much room for 

improvement  Even a little bit of background noise gets 

amplified along with the rest of the speech, making it 

more difficult to understand the desired speaker.
[1]

  Most 

current hearing-aids now utilize a dual microphone 

system, which uses an additional directional microphone 

to amplify sounds in the direction which the person is 

facing, while attenuating sounds from other directions.
[2]

  

This can be helpful in noisy environments such as 

restaurants, where the listener is usually facing the 

intended speaker with the background noise coming 

from the side and behind.  However this method is not 

always useful in other situations, and there is still much 

room for improvement in helping hearing-aid users 

 
 

better understand speech in noisy environments. 

 The Speech Communication Lab has developed an 

algorithm that is able to reduce background noise in 

speech signals, even when that noise is the speech of a 

competing speaker.  The algorithm utilizes the properties 

of speech to separate out unwanted noise, while 

preserving and amplifying certain regions of the target 

speaker to improve the overall intelligibility. 

 The algorithm was previously tested on normal 

hearing listeners with positive results (Figure 1).  The 

algorithm produced a significant increase in 

intelligibility of the noisy signals (from red to green) in 

low signal-to-noise levels, and just surpassed the noisy 

signals in the highest signal-to-noise level examined.  (A 

full explanation of the testing process and methods is 

described in the “Listening Tests” section). 

 
Figure 1.  Results of listening tests with normal hearing listeners.  

Bars represent the percent of keywords correctly identified by 

the listener; red: noisy signals, green: signals processed by 

algorithm. 

 In this study, the effectiveness of this algorithm in 

improving the intelligibility of noisy speech for hearing-

aid users will be tested and analyzed.  These tests will 

see if similar positive results can be achieved for 

hearing-aid users, and whether or not this algorithm has 

potential to be used in hearing-aids to improve the 

intelligibility of speech. 
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 II.   SPEECH PROPERTIES 

 

A. Types of Speech 

 There are two main types of speech sounds: voiced 

speech and unvoiced speech.  Voiced speech is 

generated by rapid opening and closing of the vocal 

cords, which produces a periodic waveform.  Voiced 

sounds include vowels, semivowels, nasals, and voiced 

consonants.  The formants of voiced speech at lower 

frequencies are generally stronger than the formants at 

higher frequencies.  Unvoiced speech is generated 

through various formations of the lips, tongue, and teeth, 

which can constrict or block the airflow to produce 

speech sounds.  Unlike voiced speech, unvoiced speech 

has an aperiodic waveform, and the formants at higher 

frequencies are stronger than the formants at lower 

frequencies.  Most consonants are unvoiced. 
[3]

 

 Figure 2 shows the spectrograms for four different 

versions of the signal “The sun came up to light the 

eastern sky.”  The first is simply the original clean 

speech signal; the second is a noisy version in which the 

clean signal has been corrupted with a background 

speaker; the third is a processed version generated from 

the algorithm; and the fourth is an ideally processed 

version in which correct consonant information has been 

provided. 

 Various types of speech have been labeled in the 

spectrograms.  The voiced „uh‟ and „ay‟ vowel regions 

from the words „sun‟ and „sky‟ are periodic regions 

whose formants can be seen as the dark horizontal 

bands.  The plosive „k‟ region is produced from a 

blockage of airflow by the tongue, followed by a quick 

release.  The nasal stop „n‟ region is produced by a 

blockage of airflow in the mouth by the tongue, while air 

is able to escape through the nasal cavity.  The fricative 

Figure 2.  Spectrograms of four different types of the speech signal "The sun came up to light the eastern sky."  (1) Original clean 

speech signal.  (2) Noisy corrupted signal.  (3) Processed signal.  (4) Processed ideal signal. 
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„s‟ region is characterized by a constriction of airflow by 

the tongue, producing a hissing sound.
[3]

 

 For these consonant sounds, there are two important 

physical properties that affect perception: the transient or 

frication noise produced by the constrictions of the 

mouth, teeth, and/or lips, and the formant transitions of 

the neighboring voiced region.  Both of these properties 

make up the consonant sounds of speech. 

 

B. The Algorithm 

 The algorithm extracts the voiced and unvoiced 

regions of the speech signal, and selectively amplifies or 

reduces these regions to try and isolate the target 

speaker.  The two regions that make up the consonant 

sounds in particular are amplified to better accentuate 

the consonant sounds of the speaker. 

 

III.   LISTENING TESTS 

 To test the effectiveness of the algorithm, hearing 

impaired subjects were presented with a series of 

sentences to listen to and repeat as best they could.  

Their responses were scored for accuracy based on the 

number of keywords they were able to correctly repeat 

for each sentence. 

 There were four main types of signals presented to 

listeners.  The first type was original clean signals 

consisting of a female target speaker.  The second type 

was noisy corrupted signals consisting of the clean 

signals corrupted with a male masker speaker talking at 

the same time.  The third type was processed signals 

consisting of the noisy signals run through the algorithm 

to try and remove the masking speaker and preserve just 

the target speaker.  The fourth and final type was ideally 

processed signals, which were similar to the third type 

except that the correct consonant information for the 

target speaker was made available.  This fourth type 

produced a ceiling for the algorithm‟s potential 

performance. 

 The volume ratio of the target and masker speakers 

(target-to-masker ratio, TMR) was varied for each signal 

type to simulate different levels of background noise.  

The speakers were combined at 0 dB (both target and 

masker talking at same volume level), 6 dB, and 12 dB 

(target talking much louder than masker). 

 For the tests, the listeners were presented with a mix 

of all four signal types, with each type containing a mix 

of all three target-to-masker ratios.  The clean signals 

provided a control case to verify that listeners could 

understand the original clean speech.   

 

IV.   RESULTS 

 The results of the tests were not entirely consistent, 

but they were encouraging.  At 0dB TMR, the processed 

sentences outperformed the unprocessed noisy 

sentences.  However at 6dB and 12dB TMRs, the 

processed sentences started to fall below the noisy 

unprocessed sentences, as the target speaker grew 

naturally louder than the masker speaker.  The listeners 

understood the original clean sentences at a near perfect 

rate, so all of the listeners could successfully understand 

normal clean speech. 

 For all TMRs, the ideally processed sentences were 

significantly higher than both the noisy unprocessed and 

the regular processed sentences.  This presents the best 

case performance of the algorithm, and shows that 

significant improvement in intelligibility can potentially 

be achieved.  If the consonant information of just the 

target speaker can be better isolated, the algorithm could 

reach this high level of performance. 

 While the ideally processed sentences do produce 

improvement in intelligibility from the addition of the 

true consonant information, the results also show that the 

voiced regions of the signal play an important role as 

well.  The algorithm extracts both the voiced and 

unvoiced regions of the speech signal, but when the true 

consonant information of the target speaker is given, the 

intelligibility jumps from green to blue.  The remaining 

difference from blue to black could be partially 

attributed to missing voiced information of the target 

speaker that was not recovered by the algorithm. 

 Normal hearing listeners (Figure 1) showed a greater 

increase in intelligibility at both 0dB and 6dB than 

hearing impaired listeners.  This could imply that 

hearing impaired listeners need more emphasis of the 

consonant information as well as additional voiced 

information to understand certain words. 

 While the current performance of the algorithm does 

not consistently increase intelligibility of noisy 

sentences, it does have the potential to achieve 

significant improvement.  Further analysis and 

Figure 3.  Plot showing the combined results of the listening tests.  

The bars are grouped by target-to-masker ratio (0dB, 6dB, 

12dB). 
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experimentation is needed to try and better isolate and 

amplify the consonant regions of the target speaker, and 

to achieve a more natural sounding processed signal. 

 

V.   ANALYSIS 

 Initial analysis of the signals has begun to explore and 

analyze the preservation of important physical properties 

in the signals.  In particular, the energy distribution of 

the signals is displayed to look at regions of high energy 

content within the signals.  The signals are passed 

through a filter bank designed to simulate the response 

of the human ear.  The filter bank measures the 

frequency response of the signal in various frequency 

bands, and the energy content in each region is 

calculated.  The resulting energy distribution is plotted 

to generate a 3-dimensional representation of the energy 

content in the signal with respect to time (x-axis) and 

frequency (y-axis). 

 
Figure 4.  Plots of energy content in the signals with respect to 

time (x-axis) and frequency (y-axis).  Red regions correspond to 

higher energy content, while blue regions correspond to lower 

energy content. 

 Figure 4 shows the energy distributions of the original 

clean signal, as well as masked versions of the 

corresponding clean signal, noisy signal, and processed 

signal.  The mask is calculated by specifying an energy 

threshold for the amount of energy to preserve in the 

plot.  In this case, the upper 90% of the energy in the 

clean signal is preserved, while the lower 10% of the 

energy is zeroed out (dark blue regions).  This resulting 

mask from the clean signal is then applied to the noisy 

and processed signals. 

 From this mask, we can observe how the noisy and 

processed signals behave in regions where the clean 

signal has high energy content.  We can also further 

explore how the formants have been preserved in these 

regions. 

 
Figure 5.  Plots of energy content in the signals with respect to 

time and frequency.  Similar to figure 4, except that the masks 

are calculated and applied individually for each signal. 

 Figure 5 is similar to Figure 4 in that it also shows the 

energy distributions of the signals, except that instead of 

applying the same mask of the clean signal to the noisy 

and processed signals, the masks for the noisy and 

processed signals are calculated separately and are 

applied individually.  By applying each signal with its 

own mask, we are able to see if any noise or artifacts 

have leaked into low energy regions of the processed 

signal, creating more energy where there should be very 

little.  We can also see where the processed signal does 

not preserve or accentuate certain important information 

from the original clean signal. 

 Two regions of interest have been encircled in the 

clean and processed signals of Figure 5.  The first region 

shows an area where the processed signal failed to 

reproduce information from the clean signal.  The 

second region shows an area where noise leaked into the 

processed signal where there should have been low 

energy content.  Once these types of regions have been 

isolated and identified, further analysis can begin to 

explore why this is happening and how it can be 

improved. 

 

VI.   CONCLUSION & FUTURE WORK 

 In conclusion, while the algorithm did not show a 

consistent increase in intelligibility across all decibel 

levels, it did show an increase at 0dB TMR.  

Furthermore, the ideally processed signals showed a 

significant increase in intelligibility across all TMRs, 

which demonstrates the potential for improvement and 

success for the algorithm. 

 Future work will involve further analyzing and 

comparing the processed signals with the original clean 

signals to examine how well the algorithm preserves 

certain properties of the signal.  The energy distributions 

of the signals will continue to be viewed to try and find 

patterns and isolate the shortcomings of the algorithm. 

 In addition to looking at the energy distributions of the 

signals, PESQ scores will be calculated and compared.  



MERIT BIEN 2010 Final Report 

 

5 

PESQ is a quantitative method for calculating the 

similarity between two signals.
[4]

  These scores will be 

calculated for the clean signals and their processed 

counterparts to try and quantitatively measure their 

overall similarity. 

 This future analysis will hopefully result in 

improvements and modifications to the algorithm to 

increase the intelligibility of noisy speech. 
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