

CHARACTERIZATION OF AN ATMOSPHERIC OPTICAL COMMUNICATION CHANNEL

INTRODUCTION

- An integral step in establishing a line-of-sight optical communications link is the characterization of the Earth's atmosphere as a communications channel. The atmosphere is a "turbulent" channel.
- The turbulent Earth's atmosphere can be lacksquaremodeled as a series of thin "phase screens" that, depending on various factors such as temperature and weather conditions, provide different levels of randomization of the wavefront of a laser that is transmitted through the atmosphere.
- $C_{\rm N}^{2}$, the refractive index structure constant, is the ulletmain parameter used to describe the strength of atmospheric turbulence.
- C_{N}^{2} can be determined by measuring the lacksquarefluctuations in intensity of a laser as it travels through the atmosphere.

• One laser is placed in the Chesapeake Building while a retro-reflector is placed on the roof of the Engineering Building. This laser travels from the Chesapeake to the reflector then back to the Chesapeake Building. • Simultaneously, another laser is placed on top of the Engineering Building and is shot directly to the Chesapeake Building where the intensities of both lasers are recorded by photodetectors.

R. de Guzman, D. Wenzel, Y. Zhang/C. C. Davis

Engineering Bldg.

Chesapeake Bldg.

low atmospheric turbulence and diverge at high turbulence levels.

- should fit the Rytov model.
- turbulence in the atmosphere.

FUTURE DIRECTIONS

- Atmospheric effects on intensity of laser.
- Atmospheric effects on wavefront of
- Minimizing atmospheric effects using
- Effects on fluctuations of the received signal produced by varying the receiving aperture size.

• Turbulence during the night time can be classified as weak turbulence which • Turbulence levels rise during the day

• High temperatures increase the level of