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Abstract

A relation between the Hamming weight enumerator of a linear code and the Tutte
polynomial of the corresponding matroid has been known since long ago. It provides a
simple proof of the MacWilliams equation (see D. Welsh, Matroid Theory (1976)). In
this paper we prove analogous results for the support weight distributions of a code.
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1 Introduction

Higher weights of linear codes and their distributions have received considerable interest
lately, sparked by an application of this concept in cryptography. The state-of-the-art in
the study of higher weights has been recently reviewed in [9]. The emphasis in [9] is on
the geometric aspect of the problem. Our approach is, rather, more combinatorial.

We refer to [11] for the notions and results from matroid theory used below. Let
0 ≤ k ≤ n be two integers and F = Fq a finite field. Let G be an injective and H a
surjective linear mapping acting as follows:

F k
G−→ Fn

H−→ Fn−k

such that H ◦ G = 0, and consider two matrices, G and H, where G is the transposed
matrix of G and H the matrix of H. Let S be an n-set identified with the coordinate set
of Fn. We shall study the following objects related to this structure:

C (C̃) a linear space spanned by the rows of G (H);
M (M̃) a matroid on S represented by the column space of G (H).

Remark 1. C̃ is the dual code of C and M̃ the dual matroid of M . Throughout the
paper ˜ refers to dual objects or their numerical parameters.

Definition 1 Let C be a subcode of C. A subset E of S such that

∀e∈S\E ∀c∈C (ce = 0) and ∀e∈E ∃c∈C (ce 6= 0)

is called the support of C, denoted supp C.
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Let
Ami =

∣∣∣{ C ∈ C : dim C = m, |supp C| = i
}∣∣∣, 0 ≤ m ≤ n.

The set {Ami , 0 ≤ i ≤ n} is called the mth support weight distribution of C. Define the
numbers

Dm
i =

m∑
u=0

[m]uAui , m ≥ 0 (1)

where

[m]u =
u−1∏
i=0

(qm − qi), [m]0 := 1,

and the polynomials

Dm(x) =
n∑
i=0

Dm
i x

i, m ≥ 0.

Remark 2. W (x) := D1(x) = 1 +
n∑
i=0

(q− 1)A1
ix
i is simply the Hamming weight enumer-

ator of C. Therefore,
n∑
i=0

D1
i = qk. Generally,

n∑
i=0

Dm
i =

n∑
i=0

m∑
u=0

[m]uAui =
∑
u

[m]u
∑
i

Aui =
∑
u

[m]u

[
k

u

]
= qmk,

(2)

where the last equality follows from the fact that the term [m]u

[
k

u

]
=

[m]u[k]u
[u]u

counts

the number of m× k matrices of rank u (see [2]).
Let E ⊆ S and GE = projE G. Let GE be the transposed matrix of GE . Accordingly,

let HE = projEH and HE the matrix of HE . The rank function of M(M̃) is given by
ρE = rkGE (ρ̃E = rkHE). Note that ρS = k and ρ̃S = n − k. The following equation
relates the two rank functions: for every E ⊆ S,

k − ρ(S \ E) = |E| − ρ̃E. (3)

Coding Proof. Suppose E occupies the first part of S and represent G in the form[ A 0
B D

]
, where A has the maximal possible number of rows. Let CE be the subcode of

C equal to kerHE , i.e., the subcode generated by A. Clearly,

dimCE = |E| − ρ̃E. (4)

Also since A is maximal, rk (B|D) = rk (D), and therefore dimCE = k − ρ(S \ E).
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Definition 2 The Whitney function of M is defined by

R(M ;x, y) =
∑
E⊂S

xρS−ρEy|E|−ρE (5)

and the Tutte polynomial, T (M ;x, y), by

T (M ;x, y) = R(M ;x− 1, y − 1).

A relation between the Whitney function of M and that of M̃ follows immediately
from (3) and (5):

R(M ;x, y) = R(M̃, y, x). (6)

Therefore,
T (M ;x, y) = T (M̃, y, x). (7)

Collecting monomials in (5), we can write this definition as

R(M ;x, y) =
∑
u

∑
v

Rvux
uyv,

where Rvu =
∣∣∣{ E ⊆ S : ρS − ρE = u, |E| − ρE = v

}∣∣∣. Then by (6),

Rvu = R̃uv , u, v ∈ Z. (8)

2 MacWilliams Equations for Support Weight Distributions

Proofs of the MacWilliams equations for support weight distributions were given by T.
Kløve [5] and J. Simonis [8]. The argument by J. Simonis uses implicitly the matroidal
duality (see Sect. 3).

Here we show relations between the support weight enumerators Dm(x) of C and the
Tutte polynomial of M , which by (7) enables one to re-establish the MacWilliams equation
in a simple form.

Let M |E be a restriction of M on and M.E a contraction of M to a set E (see [11];
in terms of C these operations correspond to puncturing and shortening, respectively).
An integer-valued function defined on a class of matroids is called a Tutte–Grothendieck
invariant if

(i) ∀e∈Sf(M) = f(M |(S \ e)) + f(M.(S \ e)),
(ii) if M1 is a connected component of M on T ⊆ S, then f(M) = f(M1)f(M |(S \T ).
As in [11, Sect. 15.7], it is not difficult to prove the following.

Lemma 1 The function
(1− u)kun−kDm(u)

is a Tutte–Grothendieck invariant of M .
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Then using a powerful theorem of Brylawski (see, e.g., [11]) that any Tutte–Grothendieck
invariant of M is an evaluation of its Tutte polynomial, we can prove the sought relations.

Theorem 1

Dm(u) = (1− u)kun−kT
(
M ;

1 + (qm − 1)u
1− u

,
1
u

)
, 0 ≤ m ≤ n. (9)

Now the set of MacWilliams equations follows easily.

Theorem 2 (The MacWilliams equations for support weight distributions)

Dm(x) = q−m(n−k)(1 + (qm − 1)x)nD̃m
( 1− x

1 + (qm − 1)x

)
, m ≥ 0. (10)

Proof. Starting with Dm(x), apply (9), then (7), and then again (9) in the reverse
direction.

Substituting u/v for x in Eq. (10), we can write it in a more familiar homogeneous
form:

Dm(u, v) =
1

|C̃|m
D̃m(u− v, u+ (qm − 1)v), m ≥ 0.

Remark 3. (The linear programming bound). Let Dm = (Dm
0 , D

m
1 , . . . , D

m
n ). Then

Dm = q−(n−k)mD̃mPm, m ≥ 0, (11)

where Pm is an (n+ 1)× (n+ 1) Krawtchouk matrix with entries

Pmij = Pmj (i) :=
n∑
`=0

(−1)`
(
i

`

)(
n− i
j − `

)
(qm − 1)j−`. (12)

Formally, these Krawtchouk numbers correspond to the alphabet of size qm, which
reflects the connection between higher weights in q-ary codes and the first weight in qm-
ary codes, used for deriving the MacWilliams equation in [5].

Thus, we have the generalized Delsarte–MacWilliams inequalities for linear codes in
the form

n∑
i=0

Dm
i P

m
j (i) ≥ 0, 0 ≤ j ≤ n.

Together with (2), this enables one to derive a set of linear programming bounds for linear
codes.

Theorem 3 For any m = 1, 2, . . . , n, the size of an [n, k, d] code C can be bounded from
above as follows:

|C|m ≤ max
{ n∑
i=0

Dm
i |Dm

0 = 1, Dm
i ≥ 0, Dm

1 = 0, . . . , Dm
d−1 = 0,

n∑
i=0

Dm
i P

m
j (i) ≥ 0 for 0 ≤ j ≤ n

}
.
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Example 1. Let H be formed by all n = 2s − 1 distinct nonzero binary columns. The
row space of H forms the simplex code, and the dual space is the Hamming code. Let
Ars,` be the number of s × ` matrices of rank r with distinct nonzero columns, when the
permutation of columns is not counted. Clearly,

R(M̃ ;x, y) =
∑
u,v

R̃vux
uyv,

where R̃0
s = 1 and

R̃vu = As−us,v+s−u, u ≥ 0, v > 0.

Numbers Ars,` are calculated in [6], [1] in the form

Ars,` =
[
s

r

] r−1∑
j=0

(−1)j2
1
2
j(j−1)

[
r

j

](
2r−j − 1

`

)
.

This enables one to perform explicit calculations. For instance, let n = 7, k = 4. Calcu-
lating the numbers Ar3,`, we obtain

r ` 1 2 3 4 5 6 7
1 7
2 21 7
3 28 35 21 7 1

which yields the Whitney function of M̃ in the form

R(M̃ ;x, y) = x3 + 7x2 + 21x+ 7xy + 35y + 21y2 + 7y3 + y4 + 28.

Then

T (M̃ ;x, y) = R(M̃ ;x− 1, y − 1) = 4x2 + x3 + 7xy + 3y + 6y2 + 3y3 + y4.

By (7), (9), this allows us to calculate the matrices D = (D0, . . . ,D4)t and D̃ = (D̃0, . . . ,

D̃3)t:

D =


1 0 0 0 0 0 0 0
1 0 0 7 7 0 0 1
1 0 0 21 21 126 42 45
1 0 0 49 49 882 1470 1645
1 0 0 105 105 4410 19110 41805

 D̃ =

 1 0 0 0 0 0 0 0
1 0 0 0 7 0 0 0
1 0 0 0 21 0 42 0
1 0 0 0 49 0 294 168



From this one recovers, via the triangular system formed by equations (1) for m ≥ 0,
the support weight distributions of C and C̃:

Am
i m

i 0 1 2 3 4 5 6 7
0 1 0 0 0 0 0 0 0
1 0 0 7 7 0 0 1
2 0 0 0 21 7 7
3 0 0 0 7 8
4 0 0 0 1

Ãm
i m

i 0 1 2 3 4 5 6 7
0 1 0 0 0 0 0 0 0
1 0 0 0 7 0 0 0
2 0 0 0 0 7 0
3 0 0 0 0 1
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Alternatively, if the matrix D̃ is found in a different manner, one can use Krawtchouk
matrices to compute D.

Note that though the sequence Dm
i (D̃m

i ) is by definition semi-infinite, its entries with
numbers m > dimC = 4 (resp., m > dim C̃ = 3) do not bear any additional information
about the code.
Remark 4. This seems to be one of the few examples when the Whitney function can be
found explicitly. Generally, the computation of the Tutte polynomial for vector matroids
is known to be difficult [4] and, therefore, does not facilitate the computation of support
weight distributions.

3 MacWilliams Identities for Support Weight Distributions

In her original paper [7], F. J. MacWilliams gave two proofs of the main result. The second
one uses characters and gives an equation of the form (10), while the first one leads directly
to identities between the weights in C and C̃. J. Simonis [8] mimics this approach in order
to relate the support weights in C and C̃. He starts with the quantities

Emi =
n∑
v=0

(
n− v
i

)
Amv , m ≥ 0, i ≥ 0.

Then a double counting argument shows that

Emi =
∑
α∈Z

[
α

m

]
R̃αn−k−i+α, m ≥ 0, i ≥ 0. (13)

whereupon an application of (8) just in the same manner as in the proof of Theorem 2
gives the MacWilliams-type identities in the form

Emn−i =
m∑
u=0

qu(k−n−i+u−m)

[
k − n+ i

m− u

]
Ẽui . (14)

Unfortunately, the polynomials
∑n

i=0A
m
i x

i for m ≥ 2 do not satisfy any equation of
the form (10).

Taking m = 1, we can further simplify (13). Namely, let W (x) =
∑n

i=0Aix
n−i be the

Hamming weight enumerator of C, i.e., Ai = A0
i + (q − 1)A1

i , 0 ≤ i ≤ n, and denote

Bi =
n∑
j=0

(
n− j
i

)
Aj , i ∈ Z. (15)

Then (13) implies
Bn−j =

∑
m∈Z

qmR̃mn−k−j+m, 0 ≤ j ≤ n.
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Then (14) takes on the following remarkably simple form:

Bn−j = q−(n−k−j)B̃j , 0 ≤ j ≤ n. (16)

Note that

W (x) =
n∑
i=0

Aix
n−i =

n∑
i=0

Bi(x− 1)i,

since then (15) follows by putting x = z + 1, and therefore, Eq. (16) gives also the
MacWilliams equation in a very compact form. Namely, let w(z) = W (x− 1), then

w(z) = qk(z/q)nw̃(
q

z
),

or
w(qz) = qk w̃∗(z),

where ∗ means taking the reciprocal.
Example 1 (continued.) For the [7,4,3] code, the polynomial w̃(z) has the form

w̃(z) = 8 + 28z + 42z2 + 42z3 + 35z4 + 21z5 + 7z6 + z7

and the reciprocal of 16w̃(z) is indeed taken by the substitution z → z
2 to the form

w(z) = 16 + 56z + 84z2 + 70z3 + 42z4 + 21z5 + 7z6 + z7.

Remark 5. Equation (15) implies that

Bi =
(
n

i

)
, n− distC + 1 ≤ i ≤ n.

Therefore by (14) also

Bi = q−(n−k−i)
(
n

i

)
, 0 ≤ i ≤ dist C̃ − 1.

Observe that introducing the numbers Bi corresponds to writing the polynomial W (x)
in a different basis, which makes our treatment of the Hamming weight enumerator close
to that in [10, Ch.1].

Eq. (14) gives MacWilliams identities relating the numbers Ami and Ãmi . An inter-
esting question is whether it is possible to derive identities for these quantities involving
Krawtchouk numbers, as we did in (11) for the numbers Dm

i . The answer is given by the
following theorem.

Theorem 4
n∑
i=0

Pmt (i)Ami =
m∑
u=0

|C|u
n∑
v=0

(
n− v
n− t

)
Ãuv

n∑
`=0

(−1)t−`q(`−u)(m−u)
[
k − `
m− u

](
t− v
t− `

)
.

m ≥ 0, t ≥ 0.
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Proof. We use another expression for the Krawtchouk numbers which is obtained
from (12) using the binomial expansion:

Pmt (i) =
n∑
j=0

(−1)t−n+jqm(n−j)
(
n− i
n− j

)(
j

n− t

)
.

Multiply both parts of (14) by (−1)t−n+j

(
j

n− t

)
qm(n−j) and sum over all j. Then it

turns into
n∑
i=0

Pmt (i)Ami =
∑
j

(−1)t−n+j

(
j

n− t

)
qm(n−j)

m∑
u=0

qu(j−k̃+u−m)

[
j − k̃
m− u

] n∑
v=0

(
n− v
j

)
Ãuv

=
∑
u

∑
v

Ãuv
∑
j

(−1)t−n+jquk+(j+u−n)(u−m)

[
j − k̃
m− u

](
n− v
j

)(
j

n− t

)

=
∑
u

|C|u
∑
v

(
n− v
n− t

)
Ãuv
∑
j

(−1)t−n+jq(j+u−n)(u−m)

[
j − k̃
m− u

](
t− v

t− n+ j

)

=
∑
u

|C|u
∑
v

(
n− v
n− t

)
Ãuv
∑
`

(−1)t−`q(`−u)(m−u)
[
k − `
m− u

](
t− v
t− `

)
,

where we have used the identity
(
r
j

)(
j
s

)
=
(
r
s

)(
r−s
j−s
)
.

Specializing this theorem for m = 1, we get the usual MacWilliams identities
n∑
i=1

P 1
t (i)A1

i = −
(
n

t

)
(q − 1)t−1 + |C|Ã1

t , 1 ≤ t ≤ n,

where A1
i is the number of one-dimensional subcodes of C with support i. The best upper

bound for the size of the code, obtained via the linear programming approach [3], rests on
the fact that this equation implies the inequality

n∑
i=1

Pt(i)A1
i ≥ −

(
n

t

)
(q − 1)t−1.

An attempt to parallelize this technique for higher dimensions leads to rewriting the
equation in the theorem, isolating the term with u = 0:

n∑
i=0

Pmt (i)Ami =
(
n

t

)∑
`

(−1)t−`qml
[
k − `
m

](
t

`

)
+ . . . . (17)

Unfortunately, the discarded terms are not always positive, as shown by the following
example.

Example 1 (continued.) The support weight distributions for the [7, 3, 4] code, calcu-
lated above, are {A0

0 = 1}, {A1
4 = 7}, {A2

6 = 7}, {A3
7 = 1}. Taking in (17) m = 2, t = 4,

the left-hand side equals −315 and the first term on the right-hand side equals 805.
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