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Cache memories in embedded systems play an important role in reducing the execution time of the applica-
tions. Various kinds of extensions have been added to cache hardware to enable software involvement in re-
placement decisions, thus improving the run-time over a purely hardware-managed cache. Novel embedded
systems, such as Intel’s XScale and ARM Cortex processors provide the facility of locking one or more lines
in cache - this feature is called cache locking. This paper presents a method in for instruction-cache locking
that is able to reduce the average-case runtime of a program. We demonstrate that the optimal solution for
instruction cache locking can be obtained in polynomial time. However, a fundamental lack of correlation
between cache hardware and software program points renders such optimal solutions impractical.

Instead, we propose two practical heuristics based approaches to achieve cache locking. First, we present
a static mechanism for locking the cache where the locked contents of the cache are kept fixed over the
execution of the program. Next, we present a dynamic mechanism which accounts for changing program
requirements at runtime. We devise a cost-benefit model to discover the memory addresses which should be
locked in the cache. We implement our scheme inside a binary rewriter, thus widening the applicability of
our scheme to binaries compiled using any compiler.

Results obtained on a suite of MiBench benchmarks show that our static mechanism results in 20%
improvement in the instruction-cache miss rate on average and upto 18% improvement in the execution
time on average for applications having instruction accesses as a bottleneck, compared to no cache locking.
The dynamic mechanism improves the cache miss rate by 35% on average and execution time by 32% on
instruction-cache constrained applications.
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1. INTRODUCTION

Modern embedded systems employ several memory technologies to meet stringent run-
time and power consumption constraints. SRAM and DRAM are the two most common
memories used for storing program code and data. Due to the relative cost and per-
formance of these memories, a large amount of DRAM is often complemented with a
small-size on-chip SRAM. A proper use of SRAM in embedded systems is imperative
in meeting run-time and energy constraints.

SRAM is most commonly managed in the form of a hardware cache. A cache dynam-
ically stores a subset of frequently used data or instructions following a fixed replace-
ment policy.

Various different approaches have been suggested to enable software involvement
in the management of on-chip memory. One approach involves the addition of a
lightweight software-controlled memory which relies on explicit compiler support for
data allocation. Another approach involves explicit modifications to the cache mem-
ory structure and availability of programmer level cache control instructions to enable
direct software involvement in cache replacement decisions.
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On similar lines, several embedded systems such as Intel’s XScale and ARM’s Cor-
tex processors provide a facility of locking one or more lines in the cache - this feature
is called cache locking. An address, once locked in the cache, always results in a hit
on subsequent accesses unless an unlocking operation is explicitly carried out. Hence,
a software application can influence replacement decisions made by the cache and
thereby alleviate potential mistakes resulting from cache hardware. As an example,
if a soon-to-be-accessed element is susceptible to replacement according to the under-
lying cache replacement policy in favor of an element that will not be accessed soon,
locking this element in the cache will result in a better cache performance.

However, current methods regarding instruction cache locking are geared towards
improving real-time predictability of applications [Puaut and Decotigny 2002; Puaut
2002; Falk et al. 2007; Vera et al. 2003]. These methods employ instruction cache lock-
ing for adapting the cache to multi-task real-time systems.

We presented the first method in literature [Anand and Barua 2009] employing in-
struction cache locking as a mechanism for improving the average-case runtime of
general embedded applications, thus widening its applicability beyond hard real-time
systems. Our scheme is implemented inside a binary rewriter; hence is applicable to
binaries compiled using any compiler or software development toolchains and to pro-
grams whose source code is not available e.g. legacy code or third party software. Cache
locking technique can be applied to both instruction and data caches but in this paper,
we limit ourselves to the problem of instruction cache locking.

Liang and Mitra [Liang and Mitra 2010] extended our earlier work [Anand and
Barua 2009] and presented an optimal algorithm for static instruction cache locking.
However, both these methods only explore static cache locking, where instructions are
locked once before the start of a program and remain locked during its entire execution.

In this work, we extend our earlier method and propose a novel dynamic cache lock-
ing algorithm, where the addresses locked in the cache are updated dynamically dur-
ing the execution of a program. Our mechanism identifies the program points with
significant shift in program locality and employs a cost-driven model to compute the
set of lines which should be locked at each such program point. The input program
is instrumented to achieve the locking of required lines at each program point. This
mechanism accounts for changing program requirements at runtime and dynamically
modifies the cache content.

Several existing instruction cache locking mechanisms [Arnaud and Puaut 2006; Liu
et al. 2009] have also presented techniques to divide a program into a set of regions
and for computing the contents of cache in each region. However, these techniques for
computing the regions are either closely integrated with the mechanism of minimizing
the worst case execution time (WCET) of a program or employ a simplistic approach of
assuming each basic block as a separate region [Liu et al. 2012].

Instead we propose a novel region partitioning algorithm based on a popular scratch-
pad allocation mechanism [Udayakumaran et al. 2006] that has been shown to improve
the average-case runtime of applications and operates independently of the underlying
execution-time minimization algorithm. A program is partitioned into multiple regions
based purely on the program call-graph and control-flow graph information. Further,
our experiments demonstrate that our earlier static cache conflict model [Anand and
Barua 2009] can be successfully employed for determining the cache locking contents
in each region for minimizing the average-case runtime.

We also demonstrate that an optimal solution to dynamic instruction cache locking
can be obtained in polynomial time. However, as we will discuss in later sections, it is
extremely challenging to implement this algorithm in practice due to a fundamental
lack of correlation between cache hardware decisions and software program points.
Hence, we propose a heuristic based approach for deriving a solution.
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The rest of the paper is organized as follows. Section 2 describes the underlying
cache locking interface. Section 3 overviews related work and lists the advantages of
our method. Section 4 presents a small example to depict the benefit of instruction
cache locking. Section 5 formalizes the cache locking problem and its complexity. Sec-
tion 6 presents our solution for static cache locking while Section 7 presents the dy-
namic counterpart. Section 8 presents an overview of our implementation framework.
Section 9 presents our method’s results for different cache and architecture configura-
tions on a variety of benchmarks. Section 10 concludes.

2. CACHE LOCKING INTERFACE

There are two most common kinds of locking mechanisms present in modern embedded
systems - way locking and line locking. Way locking is a coarse grain approach to cache
locking where locking is available at the granularity of ways of a set-associative cache.
Locking a particular way in cache implies the way is locked in each set of the set-
associative cache. This kind of locking is present in ARM’s Cortex processors [ARM
2004] and ARM11 family of processors [ARM 2007].

Line locking is a more fine-grained approach to cache locking. In this interface, the
locking mechanism is available at the granularity of a single cache line as opposed to
a single way. In this interface, it is possible to have a different number of locked lines
in different sets of the cache. Intel’s XScale [Xscale 2007], ARM9 family and BlackFin
5xx family processors [BlackFin 2009] support this kind of locking mechanism.

In this paper, we explore the line locking interface present on embedded systems.
These platforms provide special co-processor-based lock instructions for locking an ad-
dress specified as their argument in the cache. In such processors, way 0 of the cache
can’t be locked; we respect this constraint in deriving our results. However, we em-
phasize that our method does not require any such constraint and can be applied for
locking lines in all the ways of any set.

3. RELATED WORK

There are many existing methods targeting improvement of on-chip memory perfor-
mance through software involvement. Research in this direction can be broadly cate-
gorized in two approaches: (i) approaches involving an additional software-controlled
memory apart from, or instead of, the cache; and (ii) approaches involving direct mod-
ifications of the cache memory structure.

The first category of methods involve modifications to the memory hierarchy by in-
troducing additional software-controlled memories such as Scratchpad memory (SPM)
and loop caches. Various different kind of methods have been suggested for manag-
ing the data to be placed in SPM [Sjodin et al. 1998; Banakar et al. 2002; Panda
et al. 2000; Verma et al. 2004a; 2004b; Steinke et al. 2002; Avissar et al. 2002]. A loop
cache [Gordon-Ross et al. 2002] is a small instruction buffer which can be pre-loaded
with frequently executed loops and functions thus accelerating their access-time dur-
ing program execution. SPMs and loop caches are used in industry primarily when the
runtime behavior of applications is predictable; or to improve real-time performance.
Caches are better at tracking runtime behavior; hence they are widely employed in
many non real-time and soft real-time systems.

Even though cache locking tries to achieve the same goal of improving local memory
performance, its management strategy is inherently different from allocation problems
for the above software-controlled memories. There are two reasons for that. First, when
a cache locking method decides to lock a line in the cache, other lines that conflict with
it can no longer reside in cache in case of a direct-mapped cache, or have reduced
number of slots available in case of a set-associative cache. This opportunity cost does
not occur, and is not modeled, by methods for SPM allocation. In contrast, it is modeled
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in our method. Correctly modeling this opportunity cost is crucial — employing a SPM
allocator oblivious to this cost for locking could exclude heavily used lines from cache,
leading to poor runtime. Another reason that SPM allocators are not suitable for cache
locking is that a particular element can be placed at any location in SPM, whereas
the cache hardware decides the location of each element in a cache. This results in
entirely different kinds of constraints for the cache locking problem. The energy model
in terms of cache hits and misses suggested in [Verma et al. 2004a] for cache-aware
SPM allocation is somewhat similar to the time model we present in our paper but
their method addresses a completely different problem.

In the second category, there are methods that involve modifications to the cache
hardware to equip software to dynamically modify cache replacement decisions. Chiou
et al [Chiou et al. 2000] introduce column caching, to provide software an ability to
dynamically partition the on-chip memory into scratchpad memory; Sartor et al [Sar-
tor et al. 2005] propose an extension of each cache line with evict-me and kill-me bits;
along with a compile time locality analyzer to determine their values. These methods
provide interesting ideas for improving cache performance but rely on hardware mod-
ifications that are unavailable in any commercial processors. In contrast, our method
is a software-only scheme applicable to a variety of commercial processors.

Jones et al [Jones et al. 2011] proposes a new hybrid hardware and linktime assisted
approach to tagless instruction caching that removes the need for tag checks entirely
for the majority of cache accesses. Similar to the above methods [Chiou et al. 2000],
they rely on hardware modifications not present in existing processors. In contrast,
our method is a pure software method that works on existing processors. In addition,
the main focus of their work is to reduce power consumption in the cache as opposed
to our goal of improving average-case runtime of applications.

Research has been carried out to exploit the cache features present in existing hard-
ware - locking is one such kind of feature available in modern embedded systems.
Hollander et al [Beyls and D’Hollander 2005] suggested reuse-distance-based methods
for generating cache hints for memory access instructions, available in EPIC architec-
tures, resulting in improved data cache performance. In contrast, we don’t target the
hardware with cache hints; rather we target cache locking hardware.

Instruction cache locking has primarily been employed as a mechanism for adapt-
ing the cache to multi-task real-time systems. In multi-task systems, the presence
of caches leads to unpredictability and results in extreme over-estimation of worst
case execution time, as each access can result in a miss in the worst case [Puaut
and Decotigny 2002]. I-cache locking has been employed in such scenarios to provide
predictability; thus improving the worst case estimation. The objective of the cache-
content selection problem in such scenarios is to improve the worst case system be-
havior according to some of real-time schedulability metrics as described in [Puaut
and Decotigny 2002; Puaut 2002; Falk et al. 2007; Vera et al. 2003; Arnaud and Puaut
2006; Campoy et al. 2001]. In contrast, our objective of cache-content selection is to
improve average-case runtime of embedded applications which is completely different
objective, requiring a very different strategy.

There has been very little research on using cache locking for performance improve-
ment of general embedded applications. Hu et al [Yang et al. 2005] presented a method
for data cache locking in Itanium and XScale processors based on the length of the
reference window for each data-access instruction. In contrast, we present a locking
scheme for the instruction cache. Further, their method does not involve finding the
optimal number of cache lines to be locked in the cache; rather they rely on locking
every possible line which can be locked in cache. The over-aggressive locking might
provide negative results and does not ensure that the locked cache would give perform
better than cache with no locking. Our method suitably addresses these limitations.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Instruction Cache Locking for Improving Embedded Systems Performance A5

Earlier, we had presented the first method [Anand and Barua 2009] in literature
employing instruction cache locking as a mechanism for improving the average-case
runtime of general embedded applications. However, our previous work only explored
a static solution to cache locking. Liang and Mitra [Liang and Mitra 2010] extended
our work and presented an optimal strategy for static instruction cache locking. In
this work, we extend our previous work [Anand and Barua 2009] and propose a dy-
namic solution for cache locking, which accounts for changing program requirements
at runtime and updates the locked contents dynamically with program execution.

Several instruction cache locking mechanisms for real-time systems [Arnaud and
Puaut 2006; Puaut 2002] have suggested an approach for dynamically updating the
contents of cache by dividing the program statically into different regions. As men-
tioned in Section 1, the region partition algorithm employed by such mechanisms is
completely different from our region partition algorithm. The existing methods obtain
regions using an iterative mechanism where each such iteration is guided by a WCET
metric. They do not present any generic mechanism of replacing this underlying met-
ric. Hence, the only possible way of using their region formation method is to employ
their initial regions. As per the method presented by [Arnaud and Puaut 2006], the
first step in their method is to consider each basic block as a separate region. Choosing
each basic block as a separate region is intuitively a very high overhead operation. In-
stead of choosing this over-simplified method for region formation, we adapt a region
formation algorithm from a popular scratchpad allocation method [Udayakumaran
et al. 2006] that has been shown to improve the average-case runtime of applications.

Liu et al [Liu et al. 2012] present a dynamic method for instruction cache lock-
ing to improve average-case performance. Their method implicitly divides a program
structure into regions by considering each branching node as a potential candidate for
reloading corresponding subtree rooted at this node. However, we believe that their
method does not accurately capture the impact of dynamic cache locking for two rea-
sons. First, as mentioned in Section 6 in their paper, their method does not model
cache conflicts. Consequently their basic method is only applicable to fully-associate
caches. Second, in order to apply their method to set-associate caches, they rely on us-
ing several compiler optimizations such as code-reordering [Gordon-Ross et al. 2005]
and code placement techniques [Zhao et al. 2005] to eliminate the cache conflicts. Their
cache-locking method implicitly includes these orthogonal cache optimization strate-
gies, whose impact improves their performance results as well. They do not provide
the exclusive impact of cache locking without the above optimizations. The goal of our
method is to provide a transparent cache locking scheme that works on pre-compiled
production binaries, including third party proprietary binaries, for which source code
is not available, and hence compiler optimization is not possible. From their paper, it
cannot be deduced that their dynamic cache locking mechanism will necessarily im-
prove the performance over a state-of-the-art static cache locking method when such
orthogonal compiler optimization schemes are not employed. In contrast, our proposed
dynamic method improves upon the state of art cache locking mechanism [Liang and
Mitra 2010] in terms of application runtime.

We summarize the benefits of our scheme: (i) Ours is the first method for employing
instruction-cache locking as a mechanism for improving the average-case runtime of
general embedded applications, thus widening its applicability beyond hard real-time
systems. (ii) Ours is the first dynamic method for instruction cache locking, enabling
better results than static schemes. (iii) We provide a profile-based method and derive
the cost-benefit from actual cache statistics; thus our method is guaranteed to improve
over the performance of cache without locking. (iv) Our method has been implemented
inside a binary rewriter, widening its applicability to binaries compiled using any com-
piler. (v) Our method has an inherent mechanism that greedily determines the number
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Fig. 1: (a) Weighted CFG of a small part of a program. A, B, C and D are instructions of 4 byte each. (b) A
hypothetical memory layout of the above instructions. (c¢) A dummy 16-byte direct mapped instruction cache.
The alphabets at right hand side of each cache line show the instructions which are mapped to the line
according to the cache mapping function. (d) The execution trace of this part of the program.

of cache lines to be locked - it does not lock each possible cache line, as suggested by
some previous methods. (vi) Cache locking is already available on existing hardware
and thus our method does not entail any new hardware modifications, making our
approach readily applicable.

4. MOTIVATION

In this section, we present the potential benefits of instruction-cache locking in im-
proving cache efficiency via a small example. Figure 1 shows a weighted control-flow
graph (1(a)) and execution trace (1(d)) of a small part of a program; its hypothetical
memory layout (1(b)) and a dummy cache configuration (1(c)). The nodes and edges of
the control-flow graph are labeled with their execution frequencies as observed during
a profile run of the program. The execution trace (1(d)) of the program reveals that
a single execution of node B is followed by four instances of node C. This sequence of
execution of node B followed by node C is repeated 10 times during the execution of
the program. For simplicity, we assume that nodes A, B, C and D contain only a single
instruction each and the instruction cache is a tiny 16-byte direct mapped cache with
one word per line. Each word and instruction is assumed to be of 4-byte size.The ad-
dresses are mapped to the cache lines according to the standard modulo-based cache
mapping function:

Cache-Size
Set = (addr) mod Associativity « Words-Per-Line o

According to the above cache mapping function and the memory layout, instructions
B and C share the same line in the cache. During the execution of the above program,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Instructio A7

Node |Number of |Number of

Misses Misses

without with

locking locking
A 1 1 ol c le—— Locked
B 10 10 1
C 10 1 2
D 1 3
Total |22 13

(a) (b)

Fig. 2: (a)Number of misses observed for each node with and without locking. (b) Locking of node C in set 0
of cache.

node B and node C alternately keep replacing each other in the cache, resulting in a
large number of cache misses. The second column in Figure 2(a) shows that this cache
configuration leads to 22 misses for this sample program.

Next, assume the presence of locking functionality inside the instruction cache. If
node C is locked into cache line 0 then C would not be replaced by node B during
the execution of the program. Node C would observe only one compulsory miss while
number of misses for B would remain the same. The third column in Figure 2(a) shows
the number of misses observed by each node when node C is locked in cache as shown
in Figure 2(b). With cache locking, we observe only 13 misses, down from 22 misses in
cache without locking. This example highlights the potential of I-cache locking as an
effective mechanism for reducing cache misses.

5. THEORETICAL ANALYSIS OF CACHE LOCKING

The cache-locking problem involves selecting the memory addresses which should be
locked in the cache during each time interval such that the total number of instruction
cache misses over the lifetime of the program is minimized. The solution to this prob-
lem is influenced by the behavior of the cache mapping function. In a set-associative
cache, an address is mapped to the cache line according to the cache mapping function
(1). For a given memory address, this function returns the cache set where the address
is mapped in the cache. A particular memory address always gets mapped to the same
set in the cache, given by the above function. Thus, given the full range of instruction-
memory addresses in the current program, the list of addresses which get mapped to
a set during the lifetime of the program can be accurately obtained for each cache set.
Once this mapping of addresses to the corresponding set is obtained, each cache set can
be independently analyzed to determine the memory addresses to be locked in that set.

At each time instant T, the cache locking problem has two objectives: (i) determine
the number of lines, L, that should be locked in this set; and (ii) select these L virtual
cache lines out of the complete pool of cache lines in this set.

In his seminal paper [Belady. 1966], Belady proposed an optimal offline replace-
ment policy for virtual memory pages, which has been subsequently widely applied
for cache analysis as well. Belady’s algorithm achieves the lowest possible cache miss
rate. Other faster algorithms [Temam 1998] have also been proposed to achieve the
optimal cache miss rate. Collectively, the class of such algorithms is referred to as OPT
algorithm [Temam 1998].
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Belady’s original algorithm was based on the restriction that each block is placed in
the cache when it is referenced. A cache is said to allow bypassing when this restriction
is not imposed. As demonstrated by later methods [Brehob et al. 2004; Temam 1998],
an algorithm similar to OPT algorithm can be formulated to handle the scenarios when
bypassing in allowed in the cache. In our discussion, we define OPT-B as the class of
OPT algorithm that assume the presence of bypassing in cache.

As expected, the above research methods [Brehob et al. 2004; Temam 1998] have
demonstrated that the solution provided by 0PT-B algorithm observes lesser number
of misses as compared to the solution provided by OPT algorithm. We demonstrate
that OPT-B algorithm can be employed to provide an optimal solution for cache locking
problem in each cache set.

The OPT-B algorithm analyzes the cache accesses in a trace in the execution order.
The resulting replacement decisions can either be employed for improving cache per-
formance in future executions or for comparing different cache strategies. Intuitively,
given a trace of block accesses for the program, the OPT-B algorithm is based on evict-
ing the block which will be referenced furthest in the future. Consider an address X
that is referenced twice in a program trace at times t1 and t2, t2 > t1.

According to OPT-B algorithm, the decision for keeping X in the cache during the
time interval {t1,t2} is taken at t2. At time t2, if the number of elements that have
already been selected to be in the cache during time interval {t1,t2} is less than cache
capacity, then X is added to the list of elements which must be kept in the cache during
the {t1,t2}. On the other hand, if the total number of elements already in the cache
during time interval {t1,t2} is equal to the cache capacity then X is not kept in cache
during this interval.

We observe that the ability to lock an address in the cache provides a tangible mech-
anism to implement the solution proposed by 0PT-B algorithm. For example, in order to
keep an element X in the cache during the time interval {t1,t2}, X can be locked in the
cache at t1 and unlocked at t2. Consequently, cache locking mechanism actuates the
implementation of OPT-B algorithm. Based on this observation, we state the following
important lemma.

LEMMA: An optimal solution for cache locking can be derived in a polynomial time,
assuming perfect prior knowledge of memory accesses.

PROOF: 0PT-B is a polynomial time algorithm for obtaining an optimal solution
for cache performance. In other words, the OPT-B algorithm minimizes the number of
misses in the cache. The cache locking problem shares the same goal of minimizing
the number of misses in the cache. The capability of locking a line in cache enables the
implementation of each step of OPT-B algorithm in a constant time. Hence, OPT-B is an
optimal solution for the cache locking problem as well. The polynomial time complexity
of OPT-B results in a polynomial-time optimal algorithm for cache locking.

A perfect (or complete) knowledge of future memory accesses enables OPT-B algo-
rithm to make optimal replacement decisions. Extending this optimal replacement
algorithm to the cache locking problem implicitly models the opportunity cost arising
due to precluding the remaining elements from the cache during cache locking since
OPT-B considers every cache line as a possible candidate for locking.

However, it will be extremely challenging to obtain a practical implementation of
above cache locking method. As per the OPT-B algorithm, a new decision for evicting
a cache line can be taken at any instant during the program execution. If a program
address is executed n times, then n different locking decisions can be taken about this
particular program address. The mechanism in Section 2 specifies that cache locking
instructions corresponding to each particular address need to be inserted at fixed pro-
gram points. This would require implementation of a state machine that implements
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the underlying locking decisions governed by OPT-B. Further, this decisions for this
state machine would only be optimal for the particular input whose profiling data is
used for OPT-B.

The underlying reason for the above limitation is a fundamental lack of correla-
tion between cache replacement decisions and program points. A cache employs a
pure hardware mechanism, transparent to the software layer. At a particular program
point, the cache hardware can take distinct decisions based on the history of dynamic
accesses at that program point. Hence, it is extremely challenging to implement the
optimal cache eviction method inside a program using cache locking instructions.

This is not surprising, since the original OPT algorithm also faces similar practical
restrictions. An OPT algorithm cannot be implemented in an actual cache. However, it
is still considered as an important analytic tool in comparative studies [Burger et al.
1996; Tam et al. 1999]. The above result establishes that bounds provided by OPT-B
algorithm is applicable to the performance of cache locking methods also.

In order to handle the above limitations, we propose two distinct heuristic based
solutions to relate cache locking decisions to program points.

— Static Cache Locking: We formulate a static solution to instruction cache locking
where instructions are locked once before the start of the program and remain locked
during the entire execution of the program. Hence, in this solution, the beginning of
the program is the only point where cache locking decisions can be taken.

— Dynamic Cache Locking: In this formulation, we obtain an hybrid between static
locking and OPT-B algorithm, where we allow the cache locking decisions to be made
at several judiciously chosen program points. Such program points are chosen based
on a possibility of a large change in program locality.

Both the above solutions face another pragmatic challenge. As mentioned in Sec-
tion 2, special locking instructions are provided in target platforms which upon execu-
tion lock the elements at specified addresses in the cache lines. The solution to cache
locking problem provides a set of addresses which should be locked in the cache at each
program instant. However, a direct instrumentation of the program with the instruc-
tions for locking these addresses changes the program layout, invalidating the results
provided by our algorithm. Hence, the code layout of the updated program should be
exactly the same as the original program.

Fortunately, there are existing methods for general modifications of program bina-
ries without modifying the program layout. We adopt the trampolines approach sug-
gested in [Buck and Hollingsworth 2000] for modifying the binaries with the extra
locking instructions.

First, we insert dummy placeholders at the required program points in the binary.
After determining the addresses to be locked in the cache at required program points,
the actual locking instruction corresponding to the required lines are inserted at the
end of original program layout as a new trampoline. A jump to this trampoline is
inserted at the placeholders present at corresponding program points. After executing
the locking instructions, the trampolines transfer the control back to just after the
jump to the trampolines. The remaining placeholders are replaced by NOP instructions.
This approach guarantees that the layout of the program is not altered as a result of
insertion of locking instructions.

6. STATIC CACHE LOCKING
In this section, we formalize the cache locking problem as an optimization problem and
explain our static cache locking algorithm in detail.

Since elements in the cache are locked at the granularity of cache lines and not
individual memory addresses, addresses need to be analyzed in terms of cache lines. In
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order to represent this situation mathematically, we introduce a new concept of virtual
cache line. Given an instruction address, addr, the Virtual Cache Line is defined as

(2)

. . addr
Virtual Cache Line =

Words-Per-Line

The remaining analysis for cache locking is carried out in terms of virtual cache
lines. We introduce the following definitions to ease the explanation

N: Associativity of the cache; s: A cache set

Xs: Set of virtual cache lines which get mapped to set s

M: Cardinality of set X;.

K: Hardware specified limits on maximum number of lines which can be locked in a set
L: Number of lines to be locked, L. <K

The static cache locking problem has two objectives (i) determining L: the number
of lines which should be locked in this set (ii) selecting L virtual cache lines, out of M
candidates, which should be locked in the set.

If L lines are locked in this set, L locked virtual cache lines result in L compulsory
misses and no other misses are observed for these lines. The remaining M - L virtual
cache lines from set X; perceive the cache as a N - L set associative cache. In case
the total number of virtual cache lines sharing this particular cache set is more than
the associativity of the cache, which would definitely be true for large programs, this
decreased associativity might result in an increased miss rate for the remaining lines.

The number of solutions to the cache-locking problem is exponential since there are
an exponential number of ways to choose up to K lines to lock out of M contenders.
As demonstrated by Liang and Mitra [Liang and Mitra 2010], this is a classical NP
Hard combinatorial optimization problem with a complex integer linear programming
based solution. Further, finding an exact solution is complicated by the fact that the
increased miss rate for remaining M - L virtual cache lines cannot be accurately deter-
mined unless we know which virtual cache lines are locked in the current set of the
cache, which is one of the objectives of this optimization problem. In addition, Liang
and Mitra [Liang and Mitra 2010] demonstrated that the approximate solution to this
problem performs almost equivalent to the optimal solution at a much lower computa-
tional cost. Consequently, we explore an approximate solution for this problem.

6.1. Cache Locking Algorithm

Here, the solution for one cache set is considered in detail; the same method is em-
ployed repeatedly for each set. Our solution is based upon the total time taken to
access each virtual cache line during the lifetime of the program. We introduce a time
model for representing the total time taken to access a particular virtual cache line
during the lifetime of the program in presence of locking.

LOCKLIST: The running list of virtual cache lines locked so far in the set.

LL: The number of elements in list LOCKLIST.

HITiockiist (Xi)/MISSLockiist (x3): Total number of hits/miss obtained for a virtual cache
line x; during the lifetime of the program assuming that the lines in list LOCKLIST
were locked in the current set.

F(x;): The total number of accesses to a virtual cache line x;.

Turr/Turss: Hit and Miss latency of the cache expressed in processor cycles.
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Mathematically, this model is described as

sze(xz\LOC'KLIST) == HITLOCKLIST(l'i) * THIT
+ MISSrockrist(zi) * Tarrss

(3)

In our notation, Time (A|B) is the total time to access virtual cache line A during the
lifetime of the program given that all the virtual cache lines in mathematical set B
have already been locked in A’s cache set. This notation is borrowed from conditional
probability. LOCKLIST is initialized as an empty list. Every time a line is selected to be
locked, the LOCKLIST is updated with the line. The analysis presented is only applied
to x; ¢ LOCKLIST.

In order to find the virtual cache lines which should be locked in this set, we intro-
duce a cost-benefit model based on the above time model to find the net benefit (benefit
- cost) of locking a particular cache line. The following relation between number of
accesses, number of hits and number of misses always holds true, irrespective of the
lines currently locked (LOCKLIST) in the set:

F(Il) = HITLOCKLIST(mi) + MISSLOCKLIST(ZQ) Y LOCKLIST 4)

Using the above relation and the time model from equation (3), the original access
time for virtual cache line x;, assuming that virtual cache lines in LOCKLIST are already
locked in this set, can be represented as:

Time(mi |LOCKLIST) = HITLOCKLIST (.7;1) * THIT +
(F(zi) = HITrockrrist(v:)) * Tamiss
If line x; is locked in cache, only one miss (a compulsory miss) would be observed for

this line. All the remaining accesses to this line would definitely result in a hit. Thus
the new access time for this line would be given by following relation:

()

Time(x;|(LOCKLIST + x;)) = Tvrss  +
(F'(w;) = 1) * Tyrr

Subtracting equation 6) from equation (5), the potential benefit of locking a particu-
lar line x; can be expressed as:

(6)

BenLock(xz;) = Time(x;|LOCKLIST)

Time(z;|(LOCKLIST + x;))

= (F(x;) = HITpocokisT(wi) — 1)

* (Tvrss — Turr) (7

In order to calculate the cost of locking a line, we only consider the opportunity cost of
locking a line and not the actual cost of executing locking. Since we are just considering
a static solution, the cost of executing a single locking instruction is negligible and
hence does not affect our analysis.

In order to represent the opportunity cost of locking a particular cache line, we need
to model the increase in total access time for the remaining virtual cache lines which
map to the set under consideration. So far, [LOCKLIST| = LL virtual cache lines have
been selected for locking. Let, XL0%KLIST denotes the set of virtual cache lines mapped to
the current cache set s, excluding the elements in the list LOCKLIST. This set can be
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computed as follows
XLOOKHST — ¥  — LOCKLIST €))

The elements in LOCKLIST are already locked in cache, hence they won’t observe
any opportunity cost. According to above terminology, each line x; € X:°M5T observes
HITiockeist(x5) hits. Each element belonging to set XI%*"°T is a potential candidate for
locking. If line x; is locked at this step, then each remaining element x; of set XLO%LIST
would observe a lesser number of hits, denoted by HITigckr1st 4+, (%3). This constitutes
the cost of locking a particular line x;. Mathematically, for each x; € X:°™5T the
original access time is represented by equation (5). The new access time after locking
line x; can be represented as:

sze(xj|(LOC’KLIST + 331)) = HITLoCKLIST+2; (xj) * Ty +
(F(zj) — HITrockLisT+a: (%)) * Tarrss

9

The increase in access time for one element x; due to locking the line x;, denoted by
CostLocky, (x;), can be represented as

CostLock,, (xj) = Time(x;|(LOCKLIST + z;))
— (Time(x;|LOCKLIST)
= (HITpockrist(zj) — HITLockLisT+z,; (T5))
* (Tavrss — Turr) (10)
The total cost of locking the line x; can be represented as

CostLock(x;) = Z CostLocky, () (11)

(wj|w; EXsNwj#Ts)

The net benefit of locking a particular virtual cache line can be calculated as

NetBenefit(x;) = BenLock(x;) — CostLock(x;) (12)

A positive NetBenefit for a cache line implies that locking this line would result
in a lesser total memory access time for the program. Magnitude of the NetBenefit
represents the change in total access time. Thus the cache line with maximum positive
benefit is the ideal candidate for locking at this step.

In the above cost-benefit model, determining the exact value of HIT gckr1s74%, 1S COM-
pletely infeasible given that the number of profile runs needed would equal the num-
ber of virtual cache lines. Thus, an approximate value of HITrgckr1st+%, 18 Obtained by
locking a dummy (unused) virtual cache line in the set apart from LL lines already
locked. Hence,HITockisT++, iS approximated by computing HIT;ockr1s7+ {pummy}- Never-
theless, this approximation always provides conservative estimates for future hit rate
— in reality, one less virtual cache line would be competing for space in cache — and
thus locking a line is guaranteed to show performance improvement.

In order to meet both the objectives of the problem — determining the number of
cache lines to be locked in the set and selecting the virtual cache lines to be locked in
these lines of the set — we devise a greedy and iterative solution for this problem. Let
us examine the steps taken at the (LL + 1)*" iteration. At this point, we have a list
LOCKLIST of LL virtual cache lines which should be locked in the set. The above model
is used to calculate the NetBenefit for each of the virtual cache line x;|x; € XL0MSTIf
the net-benefit is negative for all the elements, the locking is discontinued for this set,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Instruction Cache Locking for Improving Embedded Systems Performance A:13

N: Cache size in number of lines

K: Number of lines which can be locked in each set

S Number of sets in the cache.

S;t Set where memory address x; gets mapped

X, The set of memory addresses which get mapped to set s;
F(z;): Total number of memory accesses to address x;

LL: Iterator over number of lines locked in one set

HITrockrnist(zi): Total number of hits obtained for z; when lines in set LOCKLIST are locked
MISSrockrist(z;)Total number of miss obtained for x; when lines in set LOCKLIST are locked
LOCKLIST(s;):Set of virtual cache lines which should be locked in set s;; initialized as empty
NumULockLines(s;): Number of virtual cache lines which should be locked in set s;.

Turr ! Thrss : Hit/Miss latency in processor cycles

void Cache_Locking Algorithm() :

1. for(each set s; inrange O toS-1)do:

2. for(each LL in range 0 to K-1) do :

3. for (each z; in X;) :

4, BenLock(mi) = (F(LIZ‘Z) — HITLOCKLIST(xi) — 1) * (TMISS — THIT)
5. CostLock(x:) = 3, 1. eX, wu; 0, COSLLOCKks, (2;)

6. NetBenefit(x;) = BenLoék(xi) — CostLock(x;)

7.

8. If there exists a z;, such that NetBenefit(z)) is maximum and is positive.:
9. Add z, to LOCKLIST(s;)

10. NumLockLines(s;) = NumLockLines(s;) + 1

11. Xsi:Xsi—ZCk

12. else:

13. break;

Fig. 3: Static Cache Locking Algorithm.

implying that it is not beneficial to lock any more cache line in this set. The running list
LOCKLIST represents the final list of virtual cache lines which should be locked in this
set. If there is at least one element with positive net-benefit, we find the virtual cache
line which has maximum net benefit for locking. This line is added to the list LOCKLIST.
The above steps are repeated at each iteration until at least one of the following two
conditions is true: (i) we reach the limit of maximum cache lines which can be locked in
a set or (ii) we reach a point where the net benefit becomes zero for each virtual cache
line in this set. At the end of this process, we get the number of cache lines (|[LOCKLIST|)
as well as memory addresses which should be locked in this set (LOCKLIST).

Figure 3 describes the pseudocode for the cache locking algorithm. The iterative
method for cache locking is applied exactly as described earlier. First, the instruction
trace of the application is obtained using a processor simulator. Next, this instruction
trace is used to obtain cache statistics using a cache simulator. This cache simulation
is iteratively applied with increasing number of lines locked per set. Specifically, at
each iteration, the cache simulation is repeated for two cases: first by locking the the
lines in LOCKLIST; second, by locking the lines in LOCKLIST and an additional dummy
line in each set of the cache. The data from these two profile runs is used to identify
the line to be locked during current iteration and LOCKLIST is updated accordingly. The
iterations are continued until no more lines can be profitably locked.
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main() {
proc-A();
proc-B();
while(}

o

}

proc-A({
if({
proc-C();}
else{ 1 1

proc-DI);

proc-E();}
} \ \
proc-B(){ 15 15

proc-C(){

pren o0 (ese]
...%a) 111 Cproe_bO1.12 o 114132 111 Croa 112
Fig. 4: Example showing (a) a program outline; and (b) its DPRG showing nod(ecé, edges & times-

tamps (¢) modified DPRG nodes and timestamps assuming that execution frequency of proc_E is
greater than LIMIT.

7. DYNAMIC CACHE LOCKING

In this section, we discuss our mechanism for dynamically updating the contents
locked in a cache. The primary goal is to divide the program into regions to enable
solving the problem on multiple smaller regions as compared to the complete program.

The solution consists of the following steps. First, the program code is analyzed to
determine a set of promising program points. Second, the program points with high
execution frequency are discarded since they will result in high locking overheads.
Third, a code region is defined by the code blocks lying between two consecutive pro-
gram points. Regions correspond to the granularity at which cache locking decisions
are made. Next, a heuristic based algorithm is employed to compute the locked con-
tent in the cache in each region. The required locking instructions are inserted at the
program point corresponding to the beginning point of each region. The cache content
is fixed in a particular region, but may change at region boundaries. We first describe
our method for determining such program points (and regions) and then propose our
solution to determine the locked cache content in each particular region.

7.1. Program Points

The choice of program points is critical to the success of the algorithm. Promising
program points are those after which the program has a significant change in local-
ity behavior. Further, the dynamic frequency of program points should be less than
the frequency of regions, so that the cost of executing cache locking instructions can
be recouped by corresponding improvement in memory performance. Hence, sites just
before the start of loops are especially promising program points since they are in-
frequently executed compared to the insides of loops. Moreover, the loop often re-uses
instructions, justifying the cost of locking lines in the cache.

With the above considerations, we employ a modified version of Data-Program
Region Graph (DPRG), proposed by Udayakumaran and Barua [Udayakumaran
et al. 2006], for determining program points. We modify the original DPRG struc-
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ture [Udayakumaran et al. 2006] in three aspects. First, the original DPRG was pro-
posed to solve the data allocation problem, hence it also represents variable accesses.
We do not need to represent variables since we are only targeting instruction cache
locking. Second, we discard the program points obtained by if-then-else constructs to
limit our decision points since these control constructs do not capture change in locality
as effectively as loop structures [Hwu and Chang 1989]. Third, we refine the program
points obtained through original DPRG structure by discarding the program points
with high execution frequency, since locking at those locations results in high over-
heads. The threshold for refining the program points is heuristically determined using
profiling, as explained in later sections. Below, we summarize the DPRG structure and
our modifications to this structure.

DPRG defines program points as (i) the start and end of each procedure; (ii) just
before each loop (even inner loops of nested loops). In this way, program points track
most major control-flow constructs in a program. Program points in a DPRG are the
only initial candidate sites for applying cache locking in the ensuing region. This set
is further refined and the actual solution regarding the elements to be locked in each
region is governed by the method proposed in Section 7.2.

Figure 4 shows an example illustrating how a program points are marked with
timestamps. Figure 4(a) shows the outline of an example program. It consists of six pro-
cedures, namely main(), proc-A(), proc-B(), proc-C(), proc-D() and proc-E(),
one loop, Loopl and one if-then-else construct.

Figure 4(b) shows the Data Program Relationship Graph (DPRG) for the program
in Figure 4(a). DPRG helps in the marking of timestamps and the identification of
regions. DPRG is essentially the programs call graph appended with new nodes for
loops. Similar to a control-flow graph or a call-graph, DPRG places the control-flow
contructs appearing in a program in a left-to-right order. In the DPRG shown in Fig-
ure 4(b), there are six procedures, one loop and one if-then-else construct. Separate
nodes are shown for the entire if statement (called if-header) and for its then and else
parts. Edges to procedure nodes represent calls while edges to loop nodes shows that
the loop is nested in its parent. The program points — namely the starts and ends of
procedures and loops — are represented by the start of the code in each node. In case of
a loop, its program point is outside the loop at its start. Program point corresponding
to the beginning of a procedure is inside its body at the start and the program point
corresponding to the end of a procedure is present at corresponding callsites.

Figure 4(b) also shows the timestamps (e.g 1.1, 1.2) for each program point in the
DPRG. As presented by Udayakumaran and Barua [Udayakumaran et al. 2006], the
traditional depth-first-traversal is modified in three ways to derive the timestamps.
First, then and else nodes of if statements are not assigned any numbers. Second,
the children of then and else nodes are assigned the same starting number since only
one part is executed per invocation. For example, the children of then and else nodes
shown in the figure are both marked with timestamp 1.1.1. Third, it traverses and
timestamps nodes every time they are seen, rather than only the first time. For exam-
ple, proc-E is assigned multiple timestamps.

This initial set of program points is further refined by considering the actual exe-
cution frequency at each program point. We define a threshold LIMIT and discard the
program points whose execution frequency is greater than LIMIT since the overhead
of locking at those points might be too high. The actual value of LIMIT is determined
through heuristics, as discussed in Section 9. In order to simplify the determination
of regions, the program points in the subgraph rooted at such program points are also
discarded and the whole subgraph is considered as a single node.

Figure 4(c) shows the resulting program points and corresponding timestamps after
applying the above refinement. Each program point in this modified graph denotes
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the beginning point of a region. The portions of code lying between two consecutive
program points is considered a region. For example, the code lying between main and
call to proc-A is considered part of one region. A region can have multiple terminating
program points. In Figure 4(c), the code blocks between program points 1.1 (beginning
of proc-A) and 1.1.1 (beginning of proc-C and proc-D) is considered a single region.

In our method, timestamps inside the then part of an if-else construct cannot be
compared with the timestamps inside the else part of the same if-else construct. Hence
timestamps specify only a partial order between regions, not a total order. In such
cases, the program point just outside the header is considered the next program point.
For example, the code lying between the end of call to proc-C and the end of proc-A is
considered a region.

As evident, a code block can simultaneously be part of multiple different regions.
For example, proc-E has no corresponding program point since its execution frequency
exceeds the threshold. Hence, the code block inside proc-E is considered part of two re-
gions - region between the beginning and end-point of proc-B as well as region between
the end of call to procedure proc-D in proc-A and the end of proc-A. The locked content
in such code blocks, which are part of multiple regions, is dynamically governed as per
the actual program region of execution. If proc-E is executed through the call-site in
proc-B, then the contents are determined by the program point at entry of proc-B. On
the other hand, if proc-E is executed through the call-site in proc-A, then the program
point at end of call to proc-D defines the actual contents at the time of execution.

Although it seems timestamps approximate run-time order, our method does not use
the order of timestamps in any way. Instead, once the timestamps are marked, regions
are processed independently of each other in any order. The locking at the start of
each region only considers the characteristics of that region, and does not depend on
the order of timestamps. Since our method only considers the locations of timestamps
and ignores their values; hence multiple timestamps at any location with different
values are treated the same as a single timestamp at that location.

7.2. Dynamic Locking Algorithm

The above method divides a program into a set of regions, where the program
locality is consistent in a region. Each region can be analyzed separately since
only one region is active at an execution instant. Consequently, the solution
for cache locking in each region is obtained by extending the static cache lock-
ing algorithm proposed in Section 6 with some modifications, as discussed
next. We introduce the following definitions to ease the description. Similar to
static cache locking method, the formulations are for one particular cache set s.

R: Set of program regions; r: An element of set R; p: A program point;

Exec,: Execution frequency of point p; LockInst: Number of cycles for locking a line
Y.: Set of virtual cache lines accessed in a region r mapped to a particular cache set s!
L, :Lines which should be locked in a set s in a region r

The dynamic cache locking problem has two objectives (i) For each region r, deter-
mining L, (ii) selecting |L.| virtual cache lines out of |Y.| candidates which should be
locked in the set in this region.

The benefit for locking a line in a region r is same as static cache locking and is given
by Equation 7. However, the cost for locking a line in a region is influenced by two

1Since we are considering solution independently for each cache set, we have simplified the notation by
ignoring the set representation s in the notation for Y, and L,
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Cache size in number of lines; K: Number of lines which can be locked in each set
Number of sets in the cache.

Set of regions determined by DPRG

The set of memory addresses which get mapped to set s; in a region r

(z;): 'Total number of memory accesses to address z;

LL: Iterator over number of lines locked in one set in region r

HIT] oo irrsr(xi): Number of hits obtained for 2; when lines in set LOCK LIST are locked in region r
LOCKLIST"(s;): Set of virtual cache lines which should be locked in set s; in region r
NumLockLines" (s;):Number of virtual cache lines which should be locked in set s; in region r
Turr ! Thiss : Hit/Miss latency in processor cycles

LockInst: Number of cycles for locking a lines; Exec,: Execution frequency at beginning of region r

nSme

void Dynamic_Cache Locking Algorithm() :

1. for (each region r in set R) do :

2. for (each set s; in range 0 to S -1) do :

3. for(each LL in range 0 to K -1) do :

4. for (each z; inY,) :

5. BenLock(mi) = (F(LIZ‘Z) — HITEOCKLIST(xi) — 1) * (TMISS — THIT)
6. OppCostDynLock(xz;) = Z(mﬂz,-em&xﬁ&mi) CostLock,, (z;)

7. CostDynLock(x;) = OppCostDynLock(x;) + LockInst « Execy

8. NetBenefit(x;) = BenLock(z;) — Cost DynLock(x;)

9.

10. If there exists a z;, such that NetBenefit(z)) is maximum and is positive.:
11. Add z, to LOCKLIST" (s;)

12. NumLockLines" (s;) = NumLockLines"(s;) + 1

13. Y;A = Yvr — Xk

14. else

15. break;

Fig. 5: Dynamic Cache Locking Algorithm.

factors. First, only the program addresses belonging to region r need to be considered
for computing the opportunity cost. Second, the locking instructions are now executed
each time a program point is executed. Hence, the cost of locking is no more negligible
and the model needs to reflect the locking cost.

The opportunity cost of locking a single element is given by Equation 10. However,
this opportunity cost is observed only by the elements belonging to region r. Hence,
the new opportunity cost is given by the following equation:

Onpcosthunbockizn) = Z CostLocky, () (13)
(]2 EYrlea;#a)

Further, the total cost, considering the actual cost of locking, is defined as follows:

CostDynLock(z,,) = OppCostDynLock(x,,) + LockInst * Exec, (14)

Hence, the net benefit of locking a line can be denoted as
NetBenefit(z,,) = BenLock(x;) — Cost DynLock(x,,) (15)
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The above net benefit heuristic is applied in each region to determine the set of lines
to be locked in each region. Fig 5 presents the pseudo code for dynamic cache locking
algorithm.

8. IMPLEMENTATION

In this section, we discuss the implementation of binary rewriting scheme for instruc-
tion cache locking. Figure 6 presents an overview of our experimentation workflow. Our
mechanism for cache locking can be implemented inside any existing binary rewriting
framework such as Diablo [De Sutter et al. 2005] or SecondWrite [Anand et al. 2013].

First, the binary rewriter framework is employed to obtain an intermediate repre-
sentation (IR) from the input binary. Next, the techniques presented in Section 7.1 are
employed to determine the DPRG regions/program points in the input binary. Next,
the IR is instrumented with dummy placeholders at these program points and the
binary rewriter’s backend is employed to obtain an instrumented binary.

The instrumented binary is used to obtain an instruction trace of the application us-
ing a processor simulator (details below). Next, this instruction trace is used to obtain
cache statistics using a cache simulator. This cache simulation is iteratively applied
with increasing number of lines locked per set to determine the final list of virtual
cache lines to be locked in the cache in each program region.

As mentioned in Section 5, the required locking instructions are inserted in the pro-
gram using a trampoline mechanism. After determining the addresses to be locked
in the cache, binary rewriter is employed again to insert the actual lock instruction
corresponding to the required lines in a trampoline. The unlocking operation of the
complete cache can be carried out using a single instruction [ARM 2007]. Hence, each
trampoline contains a single unlocking instruction at the beginning to unlock the lines
from the previous region.

The workflow in Figure 6 corresponds to dynamic locking. In case of static locking, a
single placeholder is inserted only at the beginning of the binary, instead of determin-
ing the placeholders using DPRG, but otherwise the workflow is similar. This approach
enables the application of our cache locking method directly to binaries.

9. RESULTS

The experiment setup consists of a Intel XScale processor core with clock frequency
600 Mhz (PXA27x family), on-chip 16 kB 4-way set-associative data cache, on-chip
instruction cache and a unified off-chip memory. The ARMulator software, which is
part of ARM Development Suite is used to simulate the processor core. The above

Input Binary Detect Binary Simulator/
binary —®| Rewriter - » DPRG - » Rewriter » | cache
Intermediate regions IR with e Instrumented e
front end Representation 9 placeholders binary

(IR) ¢

Determine LockLines

Lines to be locked

Binary
»/ Rewriter

I

Rewritten
binary

Fig. 6: The Experimental WorkFlow.
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architectural parameters can be easily configured in ARMulator. Dinero IV [Edler and
Hill 2004], a well-known cache-hierarchy simulator is used to simulate the cache. We
modified Dinero to provide the cache statistics at the granularity of virtual cache lines
and augmented it with the ability to simulate cache locking.

We configured the ARMulator to simulate a perfect zero-wait memory system. It gen-
erates the execution time in terms of processor cycles. The instruction and data miss
statistics provided by Dinero are used to calculate the effect of cache misses on exe-
cution time and is added to the execution time calculated by ARMulator to obtain the
total execution time of the application. A sample memory map file available in ARMu-
lator with average off-chip memory access time of 150ns is chosen to calculate off-chip
memory access latency. As per the XScale’s architecture manual, each locking instruc-
tion is assumed to take four cycles and is considered accordingly while calculating the
execution time of resulting binary.

A subset of MiBench benchmarks were selected to substantiate the performance
improvement obtained by our method of cache locking. At this point we have simply
included all the benchmarks that compiled and ran in our infrastructure in the time
available — the benchmarks have not been selected to be favorable to us in any way.
Table I lists the benchmarks which are used for carrying out the experiments. All the
benchmarks are compiled for 32-bit ARM instructions using the GNU-ARM Baremetal
toolchain version 4.3.3 with full optimizations and static linking of libraries.

The results for static cache locking are presented in Section 9.1 while Section 9.2
presents further improvement obtained by dynamic cache locking mechanism. Sec-
tion 9.2 also compares our static and dynamic mechanisms with the static mechanism
suggested by Liang and Mitra [Liang and Mitra 2010]. We refer to the method sug-
gested in [Liang and Mitra 2010] as 0PT-static. Based on the execution frequency of
program regions, the value of LIMIT (Section 7.1) was kept to 50 in our experiments.

9.1. Static Cache Locking

Various kinds of experiments are performed with different cache configurations for an-
alyzing the improvement in the instruction-cache miss rate and runtime of the applica-

Application | Lines Of Code | Num of Instr | Num of DynInstr
Sha 207 2501 355452842
Crc 128 1027 75738737
BitCnts 543 3340 149409187
Susan 1456 4040 60516192
Blowfish 3260 2909 868261350
Jpeg 19804 9718 104615385
Dijkstra 268 18612 536074136
Lame 15959 19810 569002359
Gsm 4779 14040 64340338
StringSearch 3072 1839 8051466
QuickSort 79 2298 830913008
Lout 30689 59828 538663
FFT 278 5868 671496345
BasicMath 7367 6375 102147075
Patricia 296 7756 114446172
Rinjdal 1017 4960 578559602

Table I: Application-Table
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Fig. 7: Percentage improvement in instruction-cache Fig. 8: Percentage improvement in instruction-cache

miss rate over cache with no locking for varying sizes miss rate over cache with no locking for different as-

of a 2-way set-associative cache. sociativities of the cache. The cache size is kept fixed
at 4 Kb.

tions. The cache configuration is varied across two dimensions: size and associativity.
The block size is kept fixed at 4 words.

The percentage improvement in the I-cache miss rate with static cache locking com-
pared to the cache configuration without locking is displayed in Figure 7 for differ-
ent cache sizes. As evident from this figure, the proposed I-cache locking mechanism
results in a consistent improvement in the instruction cache miss rate over all the
benchmarks and cache sizes. We obtain an average improvement of 15% in the I-cache
miss rate for small cache sizes and around 25% for large cache sizes. Interestingly, the
improvement in the I-cache miss rate increases with an increase in the cache size for
most of the applications. This is expected since a small cache size results in a high
opportunity cost in our cost-benefit model as locking a line prevents many other lines
from accessing that cache location, resulting into fewer lines being locked in the cache.

Figure 8 displays the variation of I-cache miss rate improvement with variation in
associativity of the cache. We see that the improvement in the I-cache miss rate ranges
from 15-18% for set-associative caches. Virtually all commercial cached embedded pro-
cessors support only set-associative caches 2, which establishes our proposed approach
as a robust mechanism for improving memory system performance. The average im-
provement in case of direct mapped cache is, not surprisingly, limited — having only
one way in a set amounts to extremely high opportunity cost resulting in very little
locking. Our goal is not to get improvements in direct-mapped cache — we never ex-
pected to, and such caches are very rare in embedded systems — but the results are
presented for completeness, and show that the method never degrades performance,
even managing a small improvement for direct mapped caches?.

Next, the impact of instruction cache locking on runtime performance of various
applications is analyzed. Figure 9 shows the savings in runtime obtained by using
the instruction cache-locking. Comparing Figure 7 and Figure 9 brings out several
interesting observations.

First, even though the cache locking scheme results in considerable improvement
of instruction cache miss rate consistently over all the applications, not all applica-
tions experience an improvement in runtime performance. The improvement in I-cache
miss rates translates to runtime performance improvement only for those applications
where the overall I-cache miss rate is high. This is not surprising since a technique

2For example, among the ARM processors, only one of the 15 processors listed on ARM’s website offers a
direct-mapped cache.

3For simulation purposes, the architectural constraint of not locking way 0 is relaxed for direct mapped
cache.
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Fig. 9: Improvement in execution time of the applica- Fig. 10: Variation of execution time improvement for
tions over cache with no locking for varying size of a processors with different clock speeds for a 4kB 2 way
2-way set associative cache set associative cache.

like ours to reduce the I-cache miss rate will not help if it is not a problem to begin
with.

Revisiting Figure 9, we see that the benchmarks on the right-hand side are marked
“significant” for different cache sizes. These are the benchmarks that have a significant
I-cache miss rate (which we define as > 1.5%) for that cache size. For the benchmarks
with significant I-cache miss rate, the runtime improvement from our cache locking
method averages 11.5% for a cache size of 8kB. The averages are shown in Figure 9
and Figure 10 in the last two columns as AVERAGE and SIG-AVERAGE, for all the
benchmarks, and those with significant miss rates, respectively. For the benchmarks
with very low I-cache miss rates, the benefits from cache locking are, not surprisingly,
low — only 1.7 % for a 2kB cache.

The 11.5% runtime improvement with cache locking for benchmarks with a signifi-
cant I-cache miss rate is encouraging and shows the benefit of our method. For some
benchmarks the benefit is even higher — e.g, the Rinjdal benchmark has a runtime
gain of 23.5%. Overall we see that about 20-60% of the benchmarks show significant
improvement, depending on the cache size and associativity used. The fact that not
all benchmarks benefit from cache locking is not an indictment against our method
— indeed there is a long history of research into techniques that benefit only a class
of applications. For example, faster garbage collectors only benefit benchmarks with
heap data, and among those, only those with significant garbage. Nonetheless, garbage
collection is still worthwhile. As classes of applications go, benefiting 20-60% of bench-
marks significantly is quite good.

Further, we observe that although increasing cache size results in better perfor-
mance in terms of instruction cache miss rate reduction, the average percentage im-
provement in execution time decreases with an increase in cache size. An increase
in the cache size results in a lower initial miss rate and thus yields smaller runtime
benefits from locking.

Next, in order to analyze the applicability of our approach for different processor
generations, we analyze the improvement in execution time for various processor fre-
quencies. We vary the processor clock speed while keeping the DRAM latency constant
in nanoseconds — this is equivalent to varying the DRAM latency in cycles. We obtain
a consistent improvement in execution time with an increase in processor frequency,
as displayed in Figure 10. Thus our method can be applied effectively for different
generations of processors.

9.2. Dynamic Cache Locking

In this section, we present the results for our dynamic cache locking algorithm and
compare the results with our static algorithm (Static in figures) as well as the
OPT-static algorithm suggested by Liang and Mitra [Liang and Mitra 2010].
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Fig. 11: Percentage improvement in instruction-cache miss rate, compared with static cache lock-
ing, for a 2-way set-associative cache of size 2 kb,4 kb, 8 kb and 16 kb.

Figure 11 presents the percentage improvement in the I-cache miss rate with dy-
namic cache locking, as compared to both static algorithms, for different cache sizes.
As evident from this figure, the dynamic I-cache locking mechanism results in a con-
sistent improvement in the instruction cache miss rate over all the benchmarks and
cache sizes. We obtain an average improvement in the range of 35% to 40% in the
I-cache miss rate for all cache sizes.

Figure 11 shows that 0PT-static obtains a slightly better I-cache miss rate than
our static algorithm, thereby revalidating the results presented in [Liang and Mitra
2010]. However, our dynamic mechanism consistently results in a better I-cache miss
rate than both static methods. We also notice a few scenarios (blowfish - 16 kB, dijkstra
- 8 kB) where our dynamic version performs worse than 0PT-static algorithm. We
believe this can be overcomed by actually applying 0PT-static, instead of applying
our static version, to determine the lines to be locked within each program region.

The results in Section 9.1 demonstrate that the improvement in the I-cache miss
rate due to static cache locking increases with an increase in the cache size for most
of the applications. Figure 11 demonstrates that dynamic cache locking mechanism
does not display this behavior. It results in a consistent improvement of around 40%
across all cache sizes. This is not surprising since the dynamic mechanism overcomes
the inherent opportunity cost involved in the static locking mechanism by dynamically
adpating the cache content with program demand. An interesting corollary of this re-
sult is that the dynamic mechanism is much more effective for smaller cache sizes.
For example, for cache size of 4 kB, the dynamic method improves the cache miss rate
by 35% as compared to 15% by static method whereas in case of a 16 kB cache, the
relative improvement is 37% over 27% improvement obtained by static mechanism.

Figure 12 displays the variation of I-cache miss rate improvement with variation in
associativity of the cache. We see that the improvement in the I-cache miss rate due
to dynamic cache locking ranges from 32-35% for different associativity of set associa-
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Fig. 12: Percentage improvement in instruction-cache Fig. 13: Improvement in execution time of the ap-
miss rate with dynamic cache locking over cache with plications with dynamic cache locking, as compared
no locking for different associativities of the cache. with static and optimal static cache locking, for vary-
The cache size if kept fixed at 8 kb. ing size of a 8 kb 2-way set associative cache.

tive caches, as compared to 15-18% improvement obtained by static mechanisms. An
interesting feature is that dynamic cache locking is also able obtain 20% performance
improvement for direct mapped caches. Recall from Section 9.1, static cache locking
was mainly effective for set associative caches. This is due to the reduced opportunity
cost in dynamic locking models.

Next, the impact of instruction cache locking on runtime performance of various ap-
plications is analyzed. Figure 13 shows the reduction in runtime by using dynamic
instruction cache-locking for a particular cache configuration, as compared to static
algorithms. Similar to Fig 9, we average the improvement in execution time for all the
benchmarks as well as the benchmarks with significant initial miss rate. Figure 13
demonstrates that the improvement in miss rate obtained by dynamic algorithms
translate effectively to an improvement in execution time. For benchmarks with a sig-
nificant I-Cache miss rate, the dynamic mechanism improves execution time by 20%
on average as compared to 11.5% and 12.5% obtained by static and OPT-static mech-
anisms respectively.

10. CONCLUSION

In this paper, we have presented an instruction cache locking mechanism for improv-
ing the average-case run-time of embedded systems, extending the applicability of
cache locking beyond real-time systems. Our instruction-cache-locking scheme is im-
plemented inside a binary rewriter, implying that our scheme can be applied to bina-
ries compiled using any compiler and to legacy codes whose source code is not avail-
able. Our results indicate that on average, the proposed cache locking scheme achieves
a 35% improvement in instruction cache miss rate and a 32% improvement in run-time
performance of instruction cache-constrained applications.

In future work, we plan to extend the cache locking mechanisms for the data cache
to further improve the run-time performance of applications.
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