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ABSTRACT
Cache memories in embedded systems play an

important role in reducing the execution time of
the applications. Various kinds of extensions have
been added to cache hardware to enable software
involvement in replacement decisions, thus improv-
ing the run-time over a purely hardware-managed
cache. Novel embedded systems, like Intel’s Xscale
and ARM Cortex processors provide the facility of
locking one or more lines in cache - this feature is
called cache locking. This paper presents the first
method in the literature for instruction-cache locking
that is able to reduce the average-case run-time of
the program. We devise a cost-benefit model to dis-
cover the memory addresses which should be locked
in the cache. We implement our scheme inside a
binary rewriter, thus widening the applicability of
our scheme to binaries compiled using any compiler.
Results obtained on a suite of MiBench and Media-
Bench benchmarks show up to 25% improvement in
the instruction-cache miss rate on average and up to
13.5% improvement in the execution time on average
for applications having instruction accesses as a bot-
tleneck, depending on the cache configuration. The
improvement in execution time is as high as 23.5%
for some benchmarks.

1 Introduction
Modern embedded systems employ several memory
technologies to meet stringent run-time and power
consumption constraints. SRAM and DRAM are the
two most common memories used for storing pro-
gram code and data. Due to the relative cost and
performance of these memories, a large amount of
DRAM is often complemented with a small-size on-
chip SRAM. The proper use of SRAM in embedded
systems is imperative in meeting run-time and energy
constraints.

SRAM is most commonly managed in the form
of a hardware-cache. A cache dynamically stores a
subset of the frequently used data or instructions fol-
lowing a fixed replacement policy.
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Various different approaches have been suggested
to enable software involvement in the management
of the on-chip memory. One approach involves the
addition of lightweight software-controlled memory
like Scratchpad memory (SPM) which rely on ex-
plicit compiler support for data allocation. Another
approach involves explicit modifications to the cache
memory structure and availability of programmer
level cache control instructions to enable direct soft-
ware involvement in cache replacement decisions.

On similar lines, several embedded systems like
Intel’s Xscale and ARM’s latest cortex processors
provide the facility of locking one or more lines in
the cache - this feature is calledcache locking . An
address, once locked in the cache, always results in
a hit on subsequent accesses unless an unlocking op-
eration is explicitly carried out. Thus, the software
can influence the replacement decision made by the
cache and thereby alleviate the potential mistakes re-
sulting from cache hardware management. As an
example, suppose a soon-to-be-accessed element is
susceptible to replacement according to the underly-
ing cache replacement policy in favor of an element
that will not be accessed soon, then locking this ele-
ment in the cache will result in a better cache perfor-
mance.

Current methods regarding instruction cache lock-
ing are geared towards improving real-time pre-
dictability of applications. We present the first
method in literature employing instruction cache
locking as a mechanism for improving the average-
case run-time of general embedded applications, thus
widening its applicability beyond hard real time sys-
tems. Our scheme is implemented inside a binary
rewriter; hence is applicable to binaries compiled us-
ing any compiler or software development toolchains
and to programs whose source code is not available
e.g. legacy code or third party software. Cache lock-
ing technique can be applied to both instruction and
data caches but in this paper, we limit ourselves to
the problem of instruction cache locking.

The rest of the paper is organized as follows. Sec-
tion 2 describes the underlying cache locking inter-
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face. Section 3 overviews related work and lists
the advantages of our method. Section 4 presents
a small example to depict the benefit of instruction
cache locking. Section 5 formalizes the cache lock-
ing problem as an optimization problem, presents our
cost-benefit model and describes our cache locking
algorithm based on the above model. Section 6 ex-
plains the experimental environment used for our re-
search. Section 7 presents properties of our bench-
marks and our method’s results on them for different
cache and architecture configurations. Section 8 con-
cludes.

2 Cache Locking Interface
There are two most common kind of locking mech-
anisms present in modern embedded systems - way
locking and line locking. Way locking is a coarse
grain approach to cache locking where locking
is available at the granularity of ways of a set-
associative cache. Locking a particular way in cache
implies the way is locked in each set of the set-
associative cache. This kind of locking is present
in ARM’s cortex processors and ARM11 family of
processors.

Line locking is a more fine-grained approach to
cache locking. In this interface, the locking mech-
anism is available at the granularity of single cache
line as opposed to single way in way locking. In this
interface, it is possible to have a different number
of locked lines in different sets of the cache. Intel’s
Xscale, ARM9 family and BlackFin 5xx family pro-
cessors support this kind of locking mechanism.

In this paper, we explore the line locking inter-
face present on embedded systems. These platforms
provide special co-processor-based lock instructions
for locking an address specified as their argument in
the cache. In such processors, way 0 of the cache
can’t be locked; we respect this constraint in deriving
our results. However, we emphasize that our method
does not require any such constraint and can be ap-
plied for locking lines in all the ways of any set.

3 Related Work
There are many existing methods targeting improve-
ment of on-chip memory performance through soft-
ware involvement. Research in this direction can
be broadly categorized in two approaches: (i) ap-
proaches involving an additional software-controlled
memory apart from, or instead of, the cache; and

(ii) approaches involving direct modifications of the
cache memory structure.

The first category of methods involve modifica-
tions to the memory hierarchy by introducing addi-
tional software-controlled memories like Scratchpad
memory (SPM) and loop caches. Various different
kind of methods have been suggested for managing
the data to be placed in SPM [3, 10, 13, 14, 16].
A loop cache [9] is a small instruction buffer which
can be pre-loaded with frequently executed loops and
functions thus accelerating their access-time during
program execution. SPMs and loop caches are used
in industry primarily where the run-time behavior of
applications is predictable; or to improve real-time
performance. Caches are better at tracking run-time
behavior; hence are widely used in many non-real-
time and soft-real-time systems.

Even though cache locking tries to achieve the
same goal of improving local memory performance,
its management strategy is inherently different from
the allocation problems for the above software-
controlled memories. There are various reasons for
that. First of all, only the cache aware approaches
of managing the software controlled memories are
applicable to the cache locking problem as other ap-
proaches can’t guarantee performance improvement
in presence of cache. In these approaches, an addi-
tional local memory is present apart from the cache.
The general approach is to assign some of the con-
flicting elements to these memories [16]. This al-
location of the elements to these memories has no
negative affect on remaining cache accesses. On the
other hand, locking an element in cache limits the
cache space availaible to remaining elements. This
opportunity cost is not modeled by the proposed al-
location methods and has been captured in the de-
cision problem formulated in this paper. Secondly,
a particular element can be placed at any location
in above software controlled memory, whereas the
cache hardware decides the location of each element
in a cache. This results in entirely different kind of
constraints for cache locking problem. The energy
model in terms of cache hits and misses suggested
in [16] for cache-aware SPM allocation is somewhat
similar to the time model we present in our paper but
their method addresses a completely different prob-
lem.

In the second category, there are methods which
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involve modifications to the cache hardware itself to
equip software to dynamically modify cache replace-
ment decisions. Rudolph et al [7] introduce column
caching, to provide software the ability to dynami-
cally partition the on-chip memory into scratchpad
memory; Wang et al [12] proposed the extension
of each cache line with evict-me and kill-me bits;
along with a compile time locality analyzer to deter-
mine their values. These methods provide interesting
ideas for improving cache performance but rely on
hardware modifications that are unavailable in any
commercial processors. In contrast, our method is a
software-only scheme applicable to a variety of com-
mercial processors.

Research has been carried out to exploit the cache
features present in existing hardwares - locking is
one such kind of feature available in modern embed-
ded systems. Hollander et al [4] suggested reuse-
distance-based methods for generating cache hints
for memory access instructions, available in EPIC
architectures, resulting in improved data cache per-
formance. In contrast, we don’t target the hardware
with cache hints; rather we target cache locking hard-
wares.

Instruction cache locking has primarily been em-
ployed as a mechanism for adapting the cache to
multi-task real time systems. In multi-task systems,
the presence of caches leads to unpredictability and
results in extreme over-estimation of worst case exe-
cution time, as each access can result in a miss in the
worst case [11]. I-cache locking has been employed
in such scenarios to provide predictability; thus im-
proving the worst case estimation. The objective of
the cache-content selection problem in such scenar-
ios is to improve the worst case system behavior ac-
cording to some of real-time schedulability metrics
as described in [2, 6, 8, 11, 15]. In contrast, our ob-
jective of cache-content selection is to improve aver-
age case run-time of embedded applications which is
completely different objective, requiring a very dif-
ferent strategy.

There has been very little research on using cache
locking for performance improvement of general
embedded applications. Hu et al [17] presented a
method for data cache locking in Itanium and Xscale
processors based on the length of the reference win-
dow for each data-access instruction. In contrast, we
present a locking scheme for the instruction cache.

Further, their method doesn’t involve finding the op-
timal number of cache lines to be locked in the cache;
rather they rely on locking every possible line which
can be locked in cache. The over-aggressive lock-
ing might provide negative results and does not en-
sure that the locked cache would give perform better
than cache with no locking. Our method suitably ad-
dresses these limitations.

We summarize the benefits of our scheme: (i) ours
is the first method for employing instruction-cache
locking as a mechanism for improving the average
case run-time of general embedded applications, thus
widening its applicability beyond hard real time sys-
tems. (ii) we provide a profile-based method and de-
rive the cost-benefit from actual cache statistics; thus
our method is guaranteed to improve over the perfor-
mance of cache without locking. (iii) our method has
been implemented inside a binary rewriter, widening
its applicability to binaries compiled using any com-
piler. (iv) our method has an inherent mechanism
that determines the optimal number of cache lines
to be locked - it does not lock each possible cache
line, as suggested by some previous methods. (v)
cache locking is already available on existing hard-
wares and thus our method does not entail any new
hardware modifications, making our approach read-
ily applicable.

4 Motivation
In this section, we present the potential benefits
of instruction-cache locking in improving cache ef-
ficiency via a small example. Figure 1 shows a
weighted control-flow graph (1(a)) and execution
trace (1(d)) of a small part of a program; its hypo-
thetical memory layout (1(b)) and a dummy cache
configuration (1(c)). The nodes and edges of the
control-flow graph are labeled with their execution
frequencies as observed during a profile run of the
program. The execution trace (1(d)) of the program
reveals that a single execution of node B is followed
by four instances of node C. This sequence of ex-
ecution of node B followed by node C is repeated
10 times during the execution of the program. For
simplicity, we assume that nodes A, B, C and D con-
tain only a single instruction each. For ease of expla-
nation, the instruction cache is a tiny 16-byte direct
mapped cache with one word per line. The addresses
are mapped to the cache lines according to the stan-
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Figure 1: (a) Weighted CFG of a small part of a program. A, B, C and
D are instructions of 4 byte each (b) A hypothetical memory layout of
the above instructions (c) A dummy 16-byte direct mapped instruction
cache. The alphabets at right hand side of each cache line show the in-
structions which are mapped to the line according to the cachemapping
function (d) The execution trace of this part of the program
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Figure 2: (a)Number of misses observed for each node with and without
locking (b) Locking of node C in set 0 of cache

dard modulo-based cache mapping function:

Set = (addr) mod
Cache-Size

Associativity ∗ Words-Per-Line
(1)

According to the above cache mapping function
and the memory layout, instructions B and C share
the same line in the cache. During the execution of
the above program, node B and node C alternately
keep replacing each other in the cache, resulting in a
large number of cache misses. The second column in
Figure 2(a) shows that this cache configuration leads
to 22 misses for this sample program.

Next, assume the presence of locking functionality
inside the instruction cache. If node C is locked into
cache line 0 then C would not be replaced by node B
during the execution of the program. Node C would
observe only one compulsory miss while number of
misses for B would remain the same. The third col-
umn in Figure 2(a) shows the number of misses ob-
served by each node when node C is locked in cache
as shown in Figure 2(b). With cache locking, we ob-
serve only 13 misses, down from 22 misses in cache

without locking. This example highlights the po-
tential of instruction cache-locking as an effective
mechanism for reducing cache misses.

5 Cache Locking
In this section, we formalize the cache locking prob-
lem as an optimization problem and explain our
cache locking algorithm in detail. We present a static
solution to instruction cache locking where instruc-
tions are locked once before the start of the program
and remain locked during the entire execution of the
program.

5.1 Overview
The cache-locking problem involves selecting the
memory addresses which should be locked in the in-
struction cache such that the total number of instruc-
tion cache misses over the lifetime of the program
is minimized. The solution to this problem is influ-
enced by the behavior of the cache mapping function.
In a set-associative cache, an address is mapped to
the cache line according to the cache mapping func-
tion (1). For a given memory address, this function
returns the cache set where the address is mapped
in the cache. A particular memory address always
gets mapped to the same set in the cache, given
by the above function. Thus, given the full range
of instruction-memory addresses in the current pro-
gram, the list of addresses which get mapped to a set
during the lifetime of the program can be accurately
obtained for each cache set. Once this mapping of
addresses to the corresponding set is obtained,each
cache set can be independently analyzed to deter-
mine the memory addresses to be locked in that set.

Since elements in the cache are locked at the gran-
ularity of cache lines and not individual memory ad-
dresses, addresses need to be analyzed in terms of
cache lines. In order to mathematically represent
this situation, we introduce a new concept of virtual
cache line. Given an instruction address, addr, the
virtual cache line is defined as

V irtualCacheLine =
addr

Words-Per-Line
(2)

The remaining analysis for cache locking is car-
ried out in terms of virtual cache lines.

Assume a N way set-associative cache. For a par-
ticular set s,Xs denotes the set of virtual cache lines
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which get mapped to this set and suppose M is the
cardinality of this set (|Xs|). In other words, M vir-
tual cache lines share this particular cache set. Let K
be the maximum number of lines which the hardware
allows to be locked in one set of the cache (K ≤ N ).

The Cache-locking problem has two objectives (i)
determining L (L ≤ K): the number of lines which
should be locked in this set (ii) selecting L virtual
cache lines out of M candidates which should be
locked in the set.

If L lines are locked in this set, L locked virtual
cache lines result in L compulsory misses and no
other misses are observed for these lines. The re-
maining M - L virtual cache lines from setXs per-
ceive the cache as a (N - L) set associative cache. In
case the total number of virtual cache lines sharing
this particular cache set is more than the associativity
of the cache, which would definitely be true for large
programs, this decreased associativity might result in
an increased miss rate for the remaining lines.

The number of solutions to the cache-locking
problem is exponential since there are an exponen-
tial number of ways to choose up to K lines to lock
out of M contenders. In all likelihood, this is a clas-
sical NP Hard combinatorial optimization problem,
which does not have an exact solution, although we
have not attempted to formally prove this. Further,
finding an exact solution is complicated by the fact
that the increased miss rate for remaining M - L vir-
tual cache lines cannot be accurately determined un-
less we know which virtual cache lines are locked in
the current set of the cache, which is one of the objec-
tives of this optimization problem. Hence, an exact
solution will not only have an exponential number
of solutions, but will require a profiling run for each
solution to determine the increased miss rate for the
remaining unlocked lines, which is completely infea-
sible. Consequently, we explore an approximate so-
lution for this problem, as presented below.

5.2 Cache Locking Algorithm
Here, the solution for one cache set is considered in
detail; the same method is employed repeatedly for
each set.

Our solution is based upon the total time taken to
access each virtual cache line during the lifetime of
the program. We introduce a time model for rep-
resenting the total time taken to access a particular

virtual cache line during the lifetime of the program
in presence of locking. Mathematically, this model
is described as

T ime(xi|LOCKLIST ) = HITLL(xi) ∗ THIT

+ MISSLL(xi) ∗ TMISS

(3)

In our notation,T ime(A|B) is the total time to ac-
cess virtual cache line A during the lifetime of the
program given that all the virtual cache lines in math-
ematical set B have already been locked in A’s cache
set. (This notation is borrowed from conditional
probability.).LOCKLIST represents the list of virtual
cache lines locked so far in the set where the virtual
cache linexi is mapped. LL denotes the number of
elements in this list(|LOCKLIST |); in other words, the
number of lines locked so far in this set.LOCKLIST

is a running list of the lines locked. It is initialized
as an empty list. Every time a line is selected to
be locked, theLOCKLIST is updated with the line.
HITLL(xi) andMISSLL(xi) denote the total number of
hits and miss obtained forxi during the lifetime of
the program assuming thatLL number of lines were
locked in the current set whileTHIT andTMISS denote
the hit latency and miss latency of the cache, respec-
tively, expressed in processor cycles. The analysis
presented is only applied toxi /∈ LOCKLIST .

In order to find the virtual cache lines which
should be locked in this set, we introduce a cost-
benefit model based on the above time model to find
the net benefit (benefit - cost) of locking a particular
cache line. To do so, letF (xi) denote the total num-
ber of accesses to a virtual cache linexi during the
lifetime of the program. The following relation be-
tween number of accesses, number of hits and num-
ber of misses always holds true, irrespective of the
number of lines currently locked (LL) in the set:

F (xi) = HITLL(xi) + MISSLL(xi) ∀ LL (4)

Using the above relation and the time model from
equation (3), the original access time for virtual
cache linexi, assuming that virtual cache lines in
LOCKLIST are already locked in this set, can be rep-
resented as:

T ime(xi|LOCKLIST ) = HITLL(xi) ∗ THIT +

(F (xi) − HITLL(xi)) ∗ TMISS

(5)

If line xi is locked in cache, only one miss (a com-
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pulsory miss) would be observed for this line. All
the remaining accesses to this line would definitely
result in a hit. Thus the new access time for this line
would be given by following relation:

T ime(xi|(LOCKLIST ∪ {xi})) = TMISS +

(F (xi) − 1) ∗ THIT

(6)

Subtracting equation (6) from equation (5), the po-
tential benefit of locking a particular linexi can be
expressed as:

BenLock(xi) = T ime(xi|LOCKLIST )

− T ime(xi|(LOCKLIST ∪ {xi}))

= (F (xi) − HITLL(xi) − 1)

∗ (TMISS − THIT ) (7)

In order to calculate the cost of locking a line, we
only consider the opportunity cost of locking a line
and not the actual cost of executing locking. Since
we are just considering a static solution, the cost of
executing a single locking instruction is negligible
and hence does not affect our analysis.

In order to represent the opportunity cost of lock-
ing a particular cache line, we need to model the in-
crease in total access time for the remaining virtual
cache lines which map to the set under consideration.
So far,|LOCKLIST | = LL virtual cache lines have been
selected for locking. Let,Xsi denotes the set of vir-
tual cache lines mapped to the current cache setsi,
excluding theLL elements in the listLOCKLIST . The
elements inLOCKLIST are already locked in cache,
hence they won’t observe any opportunity cost.

According to above terminology, each linexj ∈ Xsi

observesHITLL(xj) hits. Each element belonging to
setXsi is a potential candidate for locking. If linexi

is locked at this step, then each remaining element
xj of setXsi would observe a lesser number of hits,
denoted byHITLL+1(xj). This constitutes the cost of
locking a particular linexi. Mathematically, for each
xj ∈ Xsi , the original access time is represented by
equation (5). The new access time after locking line
xi can be represented as:

T ime(xj |(LOCKLIST ∪ {xi})) = HITLL+1(xj) ∗ THIT +

(F (xj) − HITLL+1(xj)) ∗ TMISS

(8)

The increase in access time for one elementxj due
to locking the linexi, denoted byCostLock(xi)

(xj), can
be represented as

CostLock(xi)
(xj) = T ime(xj |(LOCKLIST ∪ {xi}))

− (T ime(xj |LOCKLIST )

= (HITLL(xj) − HITLL+1(xj))

∗ (TMISS − THIT ) (9)

The total cost of locking the linexi can be repre-
sented as

CostLock(xi) =
∑

(xj |xj∈Xsi
&xj 6=xi)

CostLock(xi)
(xj)(10)

The net benefit of locking a particular virtual
cache line can be calculated as

NetBenefit(xi) = BenLock(xi) − CostLock(xi) (11)

A positiveNetBenefit for a cache line implies that
locking this line would result in a lesser total mem-
ory access time for the program. Magnitude of the
NetBenefit represents the change in total access time.
Thus the cache line with maximum positive benefit
is the ideal candidate for locking at this step.

In order to meet the both the objectives of the
problem – determining the number of cache lines to
be locked in the set and selecting the virtual cache
lines to be locked in these lines of the set – we de-
vise a greedy and iterative solution for this problem.
Let us examine the steps taken at the(LL + 1)th iter-
ation. At this point, we have a listLOCKLIST of LL
virtual cache lines which should be locked in the set.
The above model is used to calculate theNetBenefit

for each of the virtual cache linexi|xi ∈ Xsi . If the
net-benefit is negative for all the elements, the lock-
ing is discontinued for this set, implying that it is not
beneficial to lock any more cache line in this set. The
running listLOCKLIST represents the final list of vir-
tual cache lines which should be locked in this set. If
there is at least one element with positive net-benefit,
we find the virtual cache line which has maximum
net benefit for locking. This line is added to the list
LOCKLIST and is removed from the locking candi-
dates setXsi . The above steps are repeated at each
iteration until at least one of the following two condi-
tions is true: (i) we reach the limit of maximum cache
lines which can be locked in a set or (ii) we reach a
point where the net benefit becomes zero for each
virtual cache line in this set. At the end of this pro-
cess, we get the number of cache lines (|LOCKLIST |)
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N : Cache size in number of lines
K: Number of lines which can be locked in each set
S: Number of sets in the cache.
si : Set where memory addressxi gets mapped
Xsi

: The set of memory addresses which get mapped to setsi

F (xi): Total number of memory accesses to addressxi

LL: Iterator over number of lines locked in one set
HITLL(xi):Total number of hits obtained forxi when LL lines are locked in setsi

MISSLL(xi):Total number of miss obtained forxi when LL lines are locked in setsi

LockList(si): Set of virtual cache lines which should be locked in setsi

NumLockLines(si):Number of virtual cache lines which should be locked in setsi .
THIT / TMISS : Hit/Miss latency in processor cycles
void Cache Locking Algorithm() {
1. for(each setsi in range 0 to S -1 ) do{
2. for(each LL in range 0 to K -1 ) do{
3. for (eachxi in Xsi) {
4. BenLock(xi) = (F (xi) − HITLL(xi) − 1) ∗ (TMISS − THIT )
5. CostLock(xi) =

∑
xj |xj∈Xsi

&xj 6=xi
CostLock(xi)

(xj)

6. NetBenefit(xi) = BenLock(xi) − CostLock(xi)
7. }
8. If there exists axk such thatNetBenefit(xk) is maximum
9. and is positive.{
10. Addxk to LockList(si)
11. NumLockLines(si) = NumLockLines(si) + 1
12. Xsi

= Xsi
− xk

13. }
14. else{
15. break; //Locking done for this set
16. }
17. }
18. return;}

Figure 3: Cache Locking Algorithm.

as well as memory addresses which should be locked
in this set (LOCKLIST ). In other words, we obtain
the solution for both the unknowns of cache locking
problem. Figure 3 describes the psuedocode for the
cache locking algorithm.

In the above cost-benefit model,HITLL+1 cannot
be determined precisely till we know which virtual
cache line gets locked during the current step of it-
eration and would be different for each virtual cache
line. Determing the exact value is completely infea-
sible given that the number of profile runs needed
would equal the number of virtual cache lines, which
is a very large number. Thus, an approximate value
of HITLL+1 is obtained by locking a dummy (unused)
virtual cache line in the set apart fromLL lines al-
ready locked. Nevertheless, this approximation al-
ways provides conservative estimates for future hit
rate – in reality, one less virtual cache line would
be competing for space in cache – and thus locking
a line is guaranteed to show performance improve-
ment.

5.3 Binary Rewriting
In this section, we discuss the implementation of bi-
nary rewriting scheme for instruction cache locking.

As mentioned in Section 2, special locking in-
structions are provided in target platforms which on
execution lock the elements at specified addresses
in the cache lines. Once the above method deter-
mines the addresses to be locked in the cache, the
binary rewriter needs to modify the original binary
by including these locking instructions and produce

Input Binary

Simulator

Instruction 
Trace

Cache
Simulator

Software for 
determining
lock lines

Binary 
Rewriter

Re-written 
Binary

Lines to be 
locked in 
cache

Running list of   
lock lines

Figure 4: The Experimental WorkFlow

a rewritten binary.
Since our method is based on analyzing the in-

struction memory addresses of original binary, the
code layout of the re-written binary should be exactly
the same as original binary. Modifying the program
layout might render the above analysis to be incor-
rect. Fortunately, there are existing methods for gen-
eral modifications of binaries without modifying the
program layout. We adopt thetrampolines approach
suggested in [5] for modifying the binaries with these
extra locking instructions. The extra locking instruc-
tions are inserted at the end of original program lay-
out as a newtrampoline and a call to this trampoline
is inserted at the entry point of the program. The
instructions replaced by the inserted call instruction
are inserted in the above trampoline, resulting in a
very minimal modification of the original program
layout. This approach enables the application of our
cache locking method directly to binaries.

6 Experimental Setup
Experiments were conducted according to the work
flow presented in Figure 4. In our experiments,
the iterative method for cache locking is applied
exactly as described earlier. First, the instruction
trace of the application is obtained using a proces-
sor simulator (details below). Next, this instruction
trace is used to obtain cache statistics using a cache
simulator. This cache simulation is iteratively ap-
plied with increasing number of lines locked per set.
Specifically, at each iteration, the cache simulation
is repeated for two cases: first by locking the the
lines in LOCKLIST ; second, by locking the lines in
LOCKLIST and an additional dummy line in each set
of the cache. The data from these two profile runs is
used to identify the line to be locked during current
iteration andLOCKLIST is updated accordingly. The
iterations are continued until no more lines can be
profitably locked, or|LOCKLIST | == K. The final
list of virtual cache lines to be locked in the cache
is passed to the binary rewriter which inserts extra
instructions for locking virtual cache lines according
to mechanism discussed in section 5.3
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App Source Lines Of Code #Instr #DynInstr
BitCnts MiBench 543 3340 139466730

QuickSort MiBench 79 2298 341088538
Susan MiBench 1456 4040 63520600
Jpeg MiBench 19804 9718 17827512
Lame MiBench 15959 19810 220428895

Dijikstra MiBench 268 18612 272657564
StringSearch MiBench 3072 1839 8206548

Blowfish MiBench 3260 2909 801766027
Rinjdal MiBench 1017 4960 657945994

Sha MiBench 207 2501 375176492
BasicMath MiBench 7367 6375 298546634

FFT MiBench 278 5868 129260146
Lout MiBench 30689 59828 419355251

ADPCM MediaBench 411 3734 33211608
G711 MediaBench 1173 3641 28707829

Table 1: Application Characteristics

The experiment setup consists of a Intel Xs-
cale processor core with clock frequency 600 Mhz
(PXA27x family), on-chip 16 Kb 4 way set-
associative data cache, on-chip instruction cache and
a combined off-chip memory. The ARMulator soft-
ware, which is part of ARM Development Suite is
used to simulate the processor core. The above ar-
chitectural parameters can be easily configured in
ARMulator. Dinero IV [1], a well-known cache-
hierarchy simulator is used to simulate the cache. We
modified Dinero to provide the cache statistics at the
granularity of virtual cache lines and augmented it
with the ability to simulate cache locking.

We configured the ARMulator to simulate a per-
fect zero-wait memory system. It generates the ex-
ecution time in terms of processor cycles. The in-
struction and data miss statistics provided by Dinero
are used to calculate the effect of cache misses on
execution time and is added to the execution time
calculated by ARMulator to obtain total execution
time. A sample memory map file available in AR-
Mulator with average off-chip memory access time
of 100ns is chosen to calculate off-chip memory ac-
cess latency. As per the Xscale’s architecture man-
ual, each locking instruction is assumed to take four
cycles and is considered accordingly while calculat-
ing the execution time of resulting binary.

7 Results
A subset of MiBench and MediaBench benchmarks
were randomly selected to substantiate the perfor-
mance improvement obtained by our method of
cache locking. At this point we have simply included
all the benchmarks that compiled and ran in our in-
frastructure in the time available – the benchmarks
have not been selected to be favorable to us in any
way. Table 1 lists the benchmarks which are used for
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Figure 5: Percentage improvement in instruction-cache miss rate over
cache with no locking for varying sizes of a 2-way set-associative cache

carrying out the experiments. All the benchmarks are
statically compiled with the GNU-ARM toolchain.

Various kinds of experiments are performed with
different cache configurations for analyzing the im-
provement in the instruction-cache miss rate and run-
time of the applications. The cache configuration is
varied across two dimensions: size and associativity.
The block size is kept fixed at 4 words.

The percentage improvement in the I-cache miss
rate with cache locking compared to the cache con-
figuration without locking is displayed in Figure 5
for different cache sizes. As evident from this figure,
the proposed I-cache locking mechanism results in a
consistent improvement in the instruction cache miss
rate over all the benchmarks and cache sizes. We ob-
tain an average improvement of 15% in the I-cache
miss rate for small cache sizes and around 25% for
large cache sizes. Interestingly, the improvement in
the I-cache miss rate increases with an increase in
the cache size for most of the applications. This is
expected since a small cache size results in a high
opportunity cost in our cost-benefit model as lock-
ing a line prevents many other lines from accessing
that cache location, resulting into fewer lines being
locked in the cache.

Figure 6 displays the variation of I-cache miss rate
improvement with variation in associativity of the
cache. We see that the improvement in the I-cache
miss rate ranges from 15-18% for set-associative
caches. Virtually, all the commercial cached embed-
ded processors support set-associative cache exclu-
sively1, which establishes our proposed approach as

1For example, among the ARM processors, only one of the
15 processors listed on ARM’s website offers a direct-mapped
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Figure 6: Percentage improvement in instruction-cache miss rate over
cache with no locking for different associativities of the cache. The
cache size is kept fixed at 4 Kb.

a robust mechanism for improving memory system
performance. The average improvement in case of
direct mapped cache is, not surprisingly, limited –
having only one way in a set amounts to extremely
high opportunity cost resulting in very little locking.
Our goal is not to get improvements in direct-mapped
cache – we never expected to, and such caches are
very rare in embedded systems – but the results
are presented for completeness, and show that the
method never degrades performance, even managing
a small improvement for direct mapped caches2.

Next, the impact of instruction cache locking on
run-time performance of various applications is an-
alyzed. Figure 7 shows the savings in runtime ob-
tained by using the instruction cache-locking. Com-
paring Figure 5 and Figure 7 brings out two interest-
ing observations.

First, even though the cache locking scheme re-
sults in considerable improvement of instruction
cache miss rate consistently over all the applica-
tions, not all applications experience an improve-
ment in run-time performance. The improvement in
I-cache miss rates translates to run-time performance
improvement only for those applications where the
overall I-cache miss rate is high. This is not surpris-
ing since a technique like ours to reduce the I-cache
miss rate will not help if it is not a problem to begin
with. We analyzed the initial miss rate of these ap-
plications and found a direct correlation between ini-
tial miss rate of applications and the execution time

cache.
2For simulation purposes, the architectural constraint of not

locking way 0 is relaxed for direct mapped cache.

Improvement in Execution Time
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Figure 7: Improvement in execution time of the applications over cache
with no locking for varying size of a 2-way set associative cache

improvement obtained by our cache locking mech-
anism. This relation is depicted in figure 8. The
benchmarks in all the figures 5 to 9 are sorted from
left to right in increasing order of I-cache miss rate
to illustrate the correlation between the miss rate and
the overall execution time improvement.

Revisiting figure 7, we see that the benchmarks on
the right-hand side are marked ”significant” for dif-
ferent cache sizes. These are the benchmarks that
have a significant I-cache miss rate (which we de-
fine as> 1.5%) for that cache size. For the bench-
marks with significant I-cache miss rate, the run-
time improvement from our cache locking method
averages 13.5% for a cache size of 8Kb. The av-
erages are shown in figure 7 and figure 9 in the last
two columns as AVERAGE and SIG-AVERAGE, for
all the benchmarks, and those with significant miss
rates, respectively. For the benchmarks with very
low I-cache miss rates, the benefits from cache lock-
ing are, not surprisingly, low – only 1.7 % for a 2Kb
cache.

The 13.5% run-time improvement with cache
locking for benchmarks with a significant I-cache
miss rate is encouraging and shows the benefit of
our method. For some benchmarks the benefit is
even higher – for example, the Rinjdal benchmark
has a run-time gain of 23.5%. Overall we see that
about 20-60% of the benchmarks show significant
improvement, depending on the cache size and asso-
ciativity used. The fact that not all benchmarks ben-
efit from cache locking is not an indictment against
our method – indeed there is a long history of re-
search into techniques that benefit only a class of ap-
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Figure 9: Variation of execution time improvement for processors with
different clock speeds for a 2KB 2 way set associative cache

plications3. As classes of applications go, benefiting
20-60% of benchmarks significantly is quite good.

Further, we observe that, the average percentage
improvement in execution time decreases with an
increase in cache size while increasing cache size
results in better performance in terms of instruc-
tion cache miss rate reduction. An increase in the
cache size results in a lesser initial miss rate and thus
achieves smaller run-time benefits from locking.

Finally, in order to analyze the applicability of our
approach for different processor generations, we an-
alyze the improvement in execution time for vari-
ous processor frequencies. We vary the processor
clock speed while keeping the DRAM latency con-
stant in nanoseconds – this is equivalent to varying
the DRAM latency in cycles. We obtain a consistent
improvement in execution time with an increase in
processor frequency, as displayed in figure 9. Thus
our method can be applied effectively for different
generations of processors.

3e.g. faster garbage collectors only benefit benchmarks with
heap data, and among those, only those with significant garbage
– however garbage collection is still worthwhile.

8 Conclusion
In this paper, we have presented a instruction cache
locking mechanism for improving the run-time per-
formance of general embedded systems, extending
the applicability of cache locking beyond real time
systems. Our instruction cache locking scheme is
implemented inside a binary rewriter, implying that
our scheme can be applied to binaries compiled us-
ing any compiler and to legacy codes whose source
code is not available. Our results indicate that on av-
erage, the proposed cache locking scheme achieves a
25% improvement in instruction cache miss rate and
a 13.5% improvement in run-time performance of in-
struction memory constrained applications.

In future work, we plan to extend the cache lock-
ing mechanisms for the data cache to further improve
the run-time performance of applications.
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