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ABSTRACT Various different approaches have been suggested
Cache memories in embedded systems play tanenable software involvement in the management
important role in reducing the execution time adf the on-chip memory. One approach involves the
the applications. Various kinds of extensions haagldition of lightweight software-controlled memory
been added to cache hardware to enable softwke Scratchpad memory (SPM) which rely on ex-
involvement in replacement decisions, thus improplicit compiler support for data allocation. Another
ing the run-time over a purely hardware-manageghproach involves explicit modifications to the cache
cache. Novel embedded systems, like Intel's Xscateemory structure and availability of programmer
and ARM Cortex processors provide the facility dével cache control instructions to enable direct soft-
locking one or more lines in cache - this feature gare involvement in cache replacement decisions.
called cache locking. This paper presents the first On similar lines, several embedded systems like
method in the literature for instruction-cache lockinigptel's Xscale and ARM'’s latest cortex processors
that is able to reduce the average-case run-timepobvide the facility of locking one or more lines in
the program. We devise a cost-benefit model to dtke cache - this feature is calledche locking . An
cover the memory addresses which should be lockadtress, once locked in the cache, always results in
in the cache. We implement our scheme insideadit on subsequent accesses unless an unlocking op-
binary rewriter, thus widening the applicability ofration is explicitly carried out. Thus, the software
our scheme to binaries compiled using any compilean influence the replacement decision made by the
Results obtained on a suite of MiBench and Mediaache and thereby alleviate the potential mistakes re-
Bench benchmarks show up to 25% improvementsalting from cache hardware management. As an
the instruction-cache miss rate on average and ugei@ample, suppose a soon-to-be-accessed element is
13.5% improvement in the execution time on averagasceptible to replacement according to the underly-
for applications having instruction accesses as a bioig cache replacement policy in favor of an element
tleneck, depending on the cache configuration. Tthat will not be accessed soon, then locking this ele-
improvement in execution time is as high as 23.58tent in the cache will result in a better cache perfor-

for some benchmarks. mance.
. Current methods regarding instruction cache lock-
1 Introduction ing are geared towards improving real-time pre-

Modern embedded systems employ several memdigtability of applications. We present the first
technologies to meet stringent run-time and powerethod in literature employing instruction cache
consumption constraints. SRAM and DRAM are thecking as a mechanism for improving the average-
two most common memories used for storing prease run-time of general embedded applications, thus
gram code and data. Due to the relative cost awitlening its applicability beyond hard real time sys-
performance of these memories, a large amountteins. Our scheme is implemented inside a binary
DRAM is often complemented with a small-size orewriter; hence is applicable to binaries compiled us-
chip SRAM. The proper use of SRAM in embeddeitig any compiler or software development toolchains
systems is imperative in meeting run-time and energgd to programs whose source code is not available
constraints. e.g. legacy code or third party software. Cache lock-
SRAM is most commonly managed in the fornmg technique can be applied to both instruction and
of a hardware-cache. A cache dynamically storeslata caches but in this paper, we limit ourselves to
subset of the frequently used data or instructions fthe problem of instruction cache locking.
lowing a fixed replacement policy. The rest of the paper is organized as follows. Sec-
tion 2 describes the underlying cache locking inter-
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face. Section 3 overviews related work and lis{#) approaches involving direct modifications of the
the advantages of our method. Section 4 presecéghe memory structure.

a small example to depict the benefit of instruction The first category of methods involve modifica-
cache locking. Section 5 formalizes the cache lodkens to the memory hierarchy by introducing addi-
ing problem as an optimization problem, presents dional software-controlled memories like Scratchpad
cost-benefit model and describes our cache lockimgmory (SPM) and loop caches. Various different
algorithm based on the above model. Section 6 d&ind of methods have been suggested for managing
plains the experimental environment used for our rére data to be placed in SPM [3, 10, 13, 14, 16].
search. Section 7 presents properties of our benghtoop cache [9] is a small instruction buffer which
marks and our method’s results on them for differeaén be pre-loaded with frequently executed loops and
cache and architecture configurations. Section 8 cdmActions thus accelerating their access-time during
cludes. program execution. SPMs and loop caches are used
2 Cache Locking | nterface in industry primarily where the run-time behavior of

There are two most common kind of locking meclapplications is predictable; or to improve real-time
anisms present in modern embedded systems - \,pg\yformance. Caches are better at tracking run-time
locking and line locking. Way locking is a coarse behavior; hence are widely used in many non-real-
grain approach to cache locking where lockirgMe and soft-real-time systems.
is available at the granularity of ways of a set- Even though cache locking tries to achieve the
associative cache. Locking a particular way in cacA@me goal of improving local memory performance,
implies the way is locked in each set of the sdis management strategy is inherently different from
associative cache. This kind of locking is preselte allocation problems for the above software-
in ARM’s cortex processors and ARM11 family ofontrolled memories. There are various reasons for
processors. that. First-ef-all, only-the cache aware approaches
Line locking is a more fine-grained approach t1§f managing-the software controlled memories are
cache locking. In this interface, the locking mectPplicable to the cache locking problem as other ap-
anism is available at the granularity of single caci§oaches can’t guarantee performance improvement
line as opposed to single way in way locking. In thi§ Presence of cache. In these approaches, an addi-
interface, it is possible to have a different numb&Pnal local memory is present apart from the cache.
of locked lines in different sets of the cache. Intel'§h€ general approach is to assign some of the con-

Xscale, ARMO family and BlackFin 5xx family pro-flicting elements to these memories [16]. This al-
cessors support this kind of locking mechanism. location of the elements to these memories has no

In this paper, we explore the line locking inter?€gative affect on remaining cache accesses. On the

face present on embedded systems. These platfoffR¢r hand, locking an element in cache limits the
provide special co-processor-based lock instructidtRche space availaible to remaining elements. This
for locking an address specified as their argumentqRPOrtunity cost is not modeled by the proposed al-
the cache. In such processors, way 0 of the cadfgation methods and has been captured in the de-
can't be locked; we respect this constraint in derivirfgsion problem formulated in this paper. Secondly,
our results. However, we emphasize that our methddParticular element can be placed at any location

does not require any such constraint and can be Kpabove software controlled memory, whereas the
plied for locking lines in all the ways of any set. ~ ¢ache hardware decides the location of each element

3 Rdated Work in a cache. This results in entirely different kind of

There are many existing methods targeting improv((:aQnStralmS for cache locking problem. The energy

. odel in terms of cache hits and misses suggested
ment of on-chip memory performance through soft- L
) . C in [16] for cache-aware SPM allocation is somewhat
ware involvement. Research in this direction can . . )
. . ~ . _similar to the time model we present in our paper but
be broadly categorized in two approaches: (i) a

proaches involving an additional software-controll %elr method addresses a completely different prob-

. e
memory apart from, or instead of, the cache; an

In the second category, there are methods which
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involve modifications to the cache hardware itself feurther, their method doesn’t involve finding the op-
equip software to dynamically modify cache replacémal number of cache lines to be locked in the cache;
ment decisions. Rudolph et al [7] introduce colunmather they rely on locking every possible line which
caching, to provide software the ability to dynamian be locked in cache. The over-aggressive lock-
cally partition the on-chip memory into scratchpaithg might provide negative results and does not en-
memory; Wang et al [12] proposed the extensicure that the locked cache would give perform better
of each cache line with evict-me and kill-me bitghan cache with no locking. Our method suitably ad-
along with a compile time locality analyzer to detedresses these limitations.
mine their values. These methods provide interestingWe summarize the benefits of our scheme: (i) ours
ideas for improving cache performance but rely as the first method for employing instruction-cache
hardware modifications that are unavailable in afgcking as a mechanism for improving the average
commercial processors. In contrast, our method ig@se run-time of general embedded applications, thus
software-only scheme applicable to a variety of comddening its applicability beyond hard real time sys-
mercial processors. tems. (ii) we provide a profile-based method and de-
Research has been carried out to exploit the cachve the cost-benefit from actual cache statistics; thus
features present in existing hardwares - locking ésir method is guaranteed to improve over the perfor-
one such kind of feature available in modern embemtance of cache without locking. (iii) our method has
ded systems. Hollander et al [4] suggested reubeen implemented inside a binary rewriter, widening
distance-based methods for generating cache hitgspplicability to binaries compiled using any com-
for memory access instructions, available in EPIg@ler. (iv) our method has an inherent mechanism
architectures, resulting in improved data cache pénat determines the optimal number of cache lines
formance. In contrast, we don’t target the hardwat@ be locked - it does not lock each possible cache
with cache hints; rather we target cache locking hatihe, as suggested by some previous methods. (v)
wares. cache locking is already available on existing hard-
Instruction cache locking has primarily been emwvares and thus our method does not entail any new
ployed as a mechanism for adapting the cachehardware modifications, making our approach read-
multi-task real time systems. In multi-task systemity applicable.
the presence of caches leads to unpredictability and ) )
results in extreme over-estimation of worst case ex¢- M otivation
cution time, as each access can result in a miss in thethis section, we present the potential benefits
worst case [11]. I-cache locking has been employetlinstruction-cache locking in improving cache ef-
in such scenarios to provide predictability; thus inficiency via a small example. Figure 1 shows a
proving the worst case estimation. The objective wfeighted control-flow graph (1(a)) and execution
the cache-content selection problem in such scertagce (1(d)) of a small part of a program; its hypo-
ios is to improve the worst case system behavior dbetical memory layout (1(b)) and a dummy cache
cording to some of real-time schedulability metriosonfiguration (1(c)). The nodes and edges of the
as described in [2, 6, 8, 11, 15]. In contrast, our obentrol-flow graph are labeled with their execution
jective of cache-content selection is to improve avdrequencies as observed during a profile run of the
age case run-time of embedded applications whiclpi®gram. The execution trace (1(d)) of the program
completely different objective, requiring a very difreveals that a single execution of node B is followed
ferent strategy. by four instances of node C. This sequence of ex-
There has been very little research on using caak®ution of node B followed by node C is repeated
locking for performance improvement of generdlO times during the execution of the program. For
embedded applications. Hu et al [17] presentedsanplicity, we assume that nodes A, B, C and D con-
method for data cache locking in Itanium and Xscalein only a single instruction each. For ease of expla-
processors based on the length of the reference wiation, the instruction cache is a tiny 16-byte direct
dow for each data-access instruction. In contrast, wepped cache with one word per line. The addresses
present a locking scheme for the instruction caclse mapped to the cache lines according to the stan-
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without locking. This example highlights the po-
tential of instruction cache-locking as an effective
mechanism for reducing cache misses.
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5 CacheLocking

In this section, we formalize the cache locking prob-

w N B O

(c)

8016 | c lem as an optimization problem and explain our
cache locking algorithm in detail. We present a static

(ABD (ACD)*)™ solution to instruction cache locking where instruc-
(b) (d) tions are locked once before the start of the program

and remain locked during the entire execution of the
Figure 1: (a) Weighted CFG of a small part of a program. A, B, C arbirogram
D are instructions of 4 byte each (b) A hypothetical memory layaf ’
the above instructions (c) A dummy 16-byte direct mapped instm .
cache. The alphabets at right hand side of each cache limetsedn- 5.1  Qverview
structions which are mapped to the line according to the cacpping

function (d) The execution trace of this part of the program The cache-locking problem involves selecting the
memory addresses which should be locked in the in-

struction cache such that the total number of instruc-

tion cache misses over the lifetime of the program

1 1 c  |— Locked

is minimized. The solution to this problem is influ-
enced by the behavior of the cache mapping function.
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e 2B In a set-associative cache, an address is mapped to

@ ® the cache line according to the cache mapping func-

Figure 2: (a)Number of misses observed for each node with atuti tion (1). For a given memory address, this function
locking (b) Locking of node C in set 0 of cache returns the cache set where the address is mapped

dard modulo-based cache mapping function: in the cache. A particular memory address always
gets mapped to the same set in the cache, given

Set — (addr) mod Cache-Size " by the above function. Thus, given the full range

O T ) MOt Y ssociativity  Words-Per-Line of instruction-memory addresses in the current pro-

gram, the list of addresses which get mapped to a set

According to the above cache mapping functioqw"?g the lifetime of the program can t_Je accur_ately
and the memory layout, instructions B and C shap@tained for each cache set. Once this mapping of
the same line in the cache. During the execution %q]dresses to the'correspondlng set is obtaiesh
the above program, node B and node C alternat&RFe Set can be independently analyzed to deter-
keep replacing each other in the cache, resulting iy'e the memory ad_dr&‘% to be locked in that set.
large number of cache misses. The second column jrP"C€ €léments in the cache are locked at the gran-
Figure 2(a) shows that this cache configuration leaf@rity of cache lines and not individual memory ad-
to 22 misses for this sample program. dresses_, addresses need to be ana_lyzed in terms of

Next, assume the presence of locking functionali?cm? lines. In order to mathematically represent
inside the instruction cache. If node C is locked intd'S Situation, we introduce a new concept of virtual
cache line 0 then C would not be replaced by nodeC§Che line. (_3|vgn an_lnstructlon address, addr, the
during the execution of the program. Node C wouwtua] cache lineis defined as
observe only one compulsory miss while number of VirtualCacheLine — addr @
misses for B would remain the same. The third col- Words-Per-Line
umn in Figure 2(a) shows the number of misses ob- o _ o
served by each node when node C is locked in cachd N remaining analysis for cache locking is car-
as shown in Figure 2(b). With cache locking, we ofi€d outin terms of virtual cache lines.

serve only 13 misses, down from 22 misses in cache*SSume a N way set-associative cache. For a par-
ticular set s X denotes the set of virtual cache lines



which get mapped to this set and suppose M is thietual cache line during the lifetime of the program
cardinality of this set|(X;|). In other words, M vir- in presence of locking. Mathematically, this model
tual cache lines share this particular cache set. Let¥described as
be the maximum nu.mber of lines which the hardware Time(x;|LOCK LIST) = HITyp (z;) * Ter
allows to be Iockeql in one set of the caclﬂé_{g N). _ © MISSpp(eo) * Tarss )

The Cache-locking problem has two objectives (i)
determining L {. < K): the number of lines which In our notation,rime(A|B) is the total time to ac-
should be locked in this set (ii) selecting L virtuatess virtual cache line A during the lifetime of the
cache lines out of M candidates which should ogram given that all the virtual cache lines in math-
locked in the set. ematical set B have already been locked in A's cache

If L lines are locked in this set, L locked virtualket. (This notation is borrowed from conditional
cache lines result in L compulsory misses and mpoobability.). cockLrsT represents the list of virtual
other misses are observed for these lines. The cache lines locked so far in the set where the virtual
maining M - L virtual cache lines from set; per- cache line:; is mapped. LL denotes the number of
ceive the cache as a (N - L) set associative cacheelaments in this listrock L1sT)); in other words, the
case the total number of virtual cache lines sharingmber of lines locked so far in this setock LisT
this particular cache set is more than the associativisya running list of the lines locked. It is initialized
of the cache, which would definitely be true for largas an empty list. Every time a line is selected to
programs, this decreased associativity might resultia locked, thecock st is updated with the line.
an increased miss rate for the remaining lines. HITyp () andM1ss, . (z;) denote the total number of

The number of solutions to the cache-lockinigits and miss obtained far; during the lifetime of
problem is exponential since there are an expongne program assuming that number of lines were
tial number of ways to choose up to K lines to loclocked in the current set while; ;» andry,;ss denote
out of M contenders. In all likelihood, this is a clasthe hit latency and miss latency of the cache, respec-
sical NP Hard combinatorial optimization problentjvely, expressed in processor cycles. The analysis
which does not have an exact solution, although \wessented is only applied i@ ¢ LOCKLIST.
have not attempted to formally prove this. Further, In order to find the virtual cache lines which
finding an exact solution is complicated by the fashould be locked in this set, we introduce a cost-
that the increased miss rate for remaining M - L vibenefit model based on the above time model to find
tual cache lines cannot be accurately determined time net benefit (benefit - cost) of locking a particular
less we know which virtual cache lines are locked oache line. To do so, let(z;) denote the total num-
the current set of the cache, which is one of the objdier of accesses to a virtual cache lineduring the
tives of this optimization problem. Hence, an exatifetime of the program. The following relation be-
solution will not only have an exponential numbeween number of accesses, number of hits and num-
of solutions, but will require a profiling run for eactber of misses always holds true, irrespective of the
solution to determine the increased miss rate for thember of lines currently locked (LL) in the set:
remaining unlocked lines, which is completely infea-

Flai) = HITy 1 (2;) + MISSy 1 () ¥ LL 4
sible. Consequently, we explore an approximate so- () prle) ¥ pr() @

lution for this problem, as presented below. Using the above relation and the time model from
5.2 CacheLocking Algorithm equation (3), the original access time for virtual

Here, the solution for one cache set is consideredciache linez;, assuming that virtual cache lines in
detail; the same method is employed repeatedly fg?CK LIsT are already locked in this set, can be rep-

each set. resented as:
Our solution_is based upon the tptal time_' ta_ken 10 Pime(ws| LOCKLIST) = HITyy (x5) * Ty +
access each virtual cache line during the lifetime of (F@i) - HITpo (@) « Tagss

the program. We introduce a time model for rep-
resenting the total time taken to access a particulaff line =; is locked in cache, only one miss (a com-



pulsory miss) would be observed for this line. All
the remaining accesses to this line would definitely
result in a hit. Thus the new access time for this line
would be given by following relation:

08t Lock(z;)(®j) = Time(z;|(LOCKLIST U {z;}))

—  (Time(z;|LOCKLIST)

= (HITpp(z;) — HITpp41(25))

Time(x;|(LOCKLIST U{x;})) = Tarrss  + ©) *  (Tyrss —TaiT) 9)
(F(zi) = 1) * Turr
, , _ The total cost of locking the ling; can be repre-
Subtracting equation (6) from equation (5), the PQanied as

tential benefit of locking a particular ling can be

expressed as: CostLock(x;) = > Cost L gck(a;) (5)(10)
(zj |z EXsi &xjF#xw;)

BenLock(z;) = Time(z;|LOCKLIST)
— Time(z;|(LOCKLIST U {x;}))
= (F(zi) - HITpp(zi) — 1)

The net benefit of locking a particular virtual
cache line can be calculated as

*  (Tmrss —Turr) ™ NetBenefit(z;) = BenLock(z;) — CostLock(x;) (11)

In order to calculate the cost of locking a line, we A positive neteneit for a cache line implies that
only consider the opportunity cost of locking a lingycking this line would result in a lesser total mem-
and not the actual cost of executing locking. Singﬁay access time for the program. Magnitude of the
we are just considering a static solution, the cost Qf, p.... i+ represents the change in total access time.
executing a single locking instruction is negligiblghys the cache line with maximum positive benefit
and hence does not affect our analysis. is the ideal candidate for locking at this step.

In order to represent the opportunity cost of lock- |n order to meet the both the objectives of the
ing a particular cache line, we need to model the igroplem — determining the number of cache lines to
crease in total access time for the remaining Virtugé |ocked in the set and selecting the virtual cache
cache lines which map to the set under consideratiRes to be locked in these lines of the set — we de-
Sofar,Lock L1sT|= LL virtual cache lines have beeise g greedy and iterative solution for this problem.
selected for locking. Lety., denotes the set of vir-| ot s examine the steps taken at the + 1" iter-
tual cache lines mapped to the current cachessetation. At this point, we have a listockxLrst of LL
excluding the.. elements in the listocx L1sT. The virtyal cache lines which should be locked in the set.
elements inLock List are already locked in cacheshe above model is used to calculate @Bene fit
hence they won't observe any opportunity cost.  for each of the virtual cache lingjz; ¢ x.,. If the

According to above terminology, each linge X.. net-benefit is negative for all the elements, the lock-
observesiIT,, (z;) hits. Each element belonging tqng js discontinued for this set, implying that it is not
setx,, is a potential candidate for locking. Ifline  peneficial to lock any more cache line in this set. The
is locked at this step, then each remaining elemeQhning list.ocx L1sT represents the final list of vir-

z; Of setx,, would observe a lesser number of hitgya| cache lines which should be locked in this set. If

denoted byr 17, ... (x;). This constitutes the cost Ofihere is at least one element with positive net-benefit,
locking a particular line;. Mathematically, for each e find the virtual cache line which has maximum
z; € Xs,, the original access time is represented byt penefit for locking. This line is added to the list
equation (5). The new access time after locking ling,- -1 ;s and is removed from the locking candi-

z; can be represented as: dates selx.,. The above steps are repeated at each
Time(x;|(LOCKLIST U{z;})) = HIT, 141 (z;) « Tryr +  It€ration until at least one of the following two condi-
(F(xj) — HITLp 1 (25)) * Turss  tionsistrue: (i) we reach the limit of maximum cache

(®) lines which can be locked in a set or (ii) we reach a

The increase in access time for one elemeniue Point where the net benefit becomes zero for each
to locking the linex,;, denoted by ost ., (z;), can Virtual cache line in this set. At the end of this pro-
be represented as cess, we get the number of cache line®{'x L1sT1))



N': Cache size in number of lines

K: Number of lines which can be locked in each set
S: Number of sets in the cache.

s;: Set where memory address gets mapped

Xg;t The set of memory addresses which get mapped te set Trace

Input Binary Running list of
l lock lines

. Lines to be
Instruction

locked in

5211) Total number of memory accesses to address Simulator | | S?;(LT;WH ngé\?;i'ﬁifnog' cache gier:NarrKeraR;':a’:‘;e"
: Iterator over number of lines locked in one set lock lines
HITy, 1, (x;):Total number of hits pbtainet_i far; when LL Iine§ are locked in set;
e o s o 5% Figure 4: The Experimental WorkFiow
NumLock Lines(s;):Number of virtual cache lines which should be locked insgt
Trrr ! Tarrss : Hit/Miss latency in processor cycles a rewritten binary_

id Cache_L ocking-Algorithm()
;VOI fﬁ(iﬁ%hc%;gf'?ra?woééogc;s{klffgé Since our method is based on analyzing the in-

or(eacl inrange Oto K - . .. .

3 for (eachr; in X4;) { struction memory addresses of original binary, the
4. BenLock(z;) = (F(x;) — HITp(z;) — 1) * (T;rss — THIT) . .
5. CostLock(z:i) = S, 1o e x,, ka2, Co5tLock(zy) () COAE layout of the re-written binary should be exactly
& NetBenefit(i) = Benbock(vi) = Costlock(w:) the same as original binary. Modifying the program
7 :
g e caan Such thatVet Bene fit(x)fs mesdmum layout might render the above analysis to be incor-
> S N wmLockLines(s) + 1 rect. Fortunately, there are existing methods for gen-
g m T eral modifications of binaries without modifying the
14. | .
1. e ek JlLosking done for this set program Iayout. We adqpt_ theampqhne; app_roach
oot suggested in [5] for modifying the binaries with these
18. rewrn;} extra locking instructions. The extra locking instruc-

Figure 3: Cache Locking Algorithm. . . ..
9 970 tions are inserted at the end of original program lay-

as well as memory addresses which should be lockest as a newrampoline and a call to this trampoline

in this set (ockrLisT). In other words, we obtainis inserted at the entry point of the program. The

the solution for both the unknowns of cache lockingstructions replaced by the inserted call instruction

problem. Figure 3 describes the psuedocode for @ inserted in the above trampoline, resulting in a

cache locking algorithm. very minimal modification of the original program
In the above cost-benefit model; 7., cannot layout. This approach enables the application of our

be determined precisely till we know which virtuatache locking method directly to binaries.

cache line gets locked during the current step of'é; .
eration and would be different for each virtual cach Experlmental SetUp

line. Determing the exact value is completely infed=xPeriments were conducted according to the work
sible given that the number of profile runs needdW Presented in Figure 4. 'In our experiments,
would equal the number of virtual cache lines, whidh€ iterative method for cache locking is applied
is a very large number. Thus, an approximate valgkactly as described earlier. First, the instruction
of HIT,, ., is obtained by locking a dummy (unuseo‘face of the application is obtained using a proces-
virtual cache line in the set apart from lines al- SO simulator (details below). Next, this instruction
ready locked. Nevertheless, this approximation &face is used to obtain cache statistics using a cache
ways provides conservative estimates for future ifnulator. This cache simulation is iteratively ap-
rate — in reality, one less virtual cache line woulRlied with increasing number of lines locked per set.
be competing for space in cache — and thus Iocki§@ecifically, at each iteration, the cache simulation

a line is guaranteed to show performance improJg-féPeated for two cases: first by locking the the
ment. lines in LockrLisT; second, by locking the lines in

_ o rockList and an additional dummy line in each set
5.3 Binary Rewriting of the cache. The data from these two profile runs is

In this set_:t_lon, we dlscuss_ the |mplementat|on O_f tﬁ’sed to identify the line to be locked during current

hary rewrm_ng sch_eme for_ Instruction gache I(_)Ck'r_]gheration andcock L1sT is updated accordingly. The
As .ment|oned n Seguon 2, special Iockmg Nterations are continued until no more lines can be

structions are provided in target platforms which Oﬁ}ofitably locked, onzockLisT| —— k. The final

execution lock the elements at specified addresﬁ@tsof virtual cache lines to be locked in the cache

m_the cache lines. Once the aboye method detﬁr'passed to the binary rewriter which inserts extra
mines the addresses to be locked in the cache

, _ , L o &ructions for locking virtual cache lines according
binary rewriter needs to modify the original bmary0 mechanism discussed in section 5.3
by including these locking instructions and produce '



App Source LinesOf Code | #lnstr #Dynlnstr
BitCnts MiBench 543 3340 | 139466730 60
QuickSort MiBench 79 2298 | 341088538
Susan MiBench 1456 4040 | 63520600 50 I
Jpeg MiBench 19804 9718 | 17827512 =
Lame MiBench 15959 19810 220428895 g a0
Dijikstra MiBench 268 18612 | 272657564 ]
StringSearch | MiBench 3072 1839 8206548 E 5
Blowfish MiBench 3260 2909 | 801766027 o
Rinjdal MiBench 1017 4960 | 657945994 £
Sha MiBench 207 2501 | 375176492 S
BasicMath MiBench 7367 6375 | 298546634 @
FFT MiBench 278 5868 | 129260146 0
Lout MiBench 30689 59828 | 419355251
ADPCM MediaBench 411 3734 | 33211608 0
T © L@ LS RO S D &N e S > 2 K
G711 MediaBench 1173 3641 | 28707829 Q_}\@ & 6&2&\« RU é\x@%’y f(ﬁ}o f;\ o5 @é\}@o
Table 1: Application Characteristics BenchMarks

The experiment setup consists of a Intel Xgi_gure 5: Percentage improvement in instruction-cache missonzer
cache with no locking for varying sizes of a 2-way set-assttv@ cache

cale processor core with clock frequency 600 Mhz

(PXA27x family), on-chip 16 Kb 4 way set-carrying out the experiments. All the benchmarks are
associative data cache, on-chip instruction cache afgkically compiled with the GNU-ARM toolchain.

a combined off-chip memory. The ARMulator soft- various kinds of experiments are performed with

ware, which is part of ARM Development Suite iglifferent cache configurations for analyzing the im-

used to simulate the processor core. The above gigvement in the instruction-cache miss rate and run-
chitectural parameters can be easily configuredtjme of the applications. The cache configuration is

ARMulator.  Dinero IV [1], a well-known cache-yaried across two dimensions: size and associativity.
hierarchy simulator is used to simulate the cache. Whe block size is kept fixed at 4 words.

modified Dinero to provide the cache statistics at theThe percentage improvement in the I-cache miss

granularity of virtual cache lines and augmented ite with cache locking compared to the cache con-
with the ability to simulate cache locking. figuration without locking is displayed in Figure 5

We configured the ARMulator to simulate a pefor different cache sizes. As evident from this figure,
fect zero-wait memory system. It generates the aXe proposed I-cache locking mechanism results in a
ecution time in terms of processor cycles. The igonsistent improvement in the instruction cache miss
struction and data miss statistics provided by Dinefgte over all the benchmarks and cache sizes. We ob-
are used to calculate the effect of cache missestgh an average improvement of 15% in the I-cache
execution time and is added to the execution timgiss rate for small cache sizes and around 25% for
calculated by ARMulator to obtain total exeCUtiOI'arge cache sizes. Interestingly, the improvement in
time. A sample memory map file available in ARthe |-cache miss rate increases with an increase in
Mulator with average off-chip memory access timg@e cache size for most of the applications. This is
of 100ns is chosen to calculate off-chip memory agxpected since a small cache size results in a high
cess latency. As per the Xscale’s architecture mapportunity cost in our cost-benefit model as lock-
ual, each locking instruction is assumed to take fogig a line prevents many other lines from accessing
cycles and is considered accordingly while calculahat cache location, resulting into fewer lines being
ing the execution time of resulting binary. locked in the cache.

Figure 6 displays the variation of I-cache miss rate

7 Results improvement with variation in associativity of the
A subset of MiBench and MediaBench benchmarkgche. We see that the improvement in the I-cache
were randomly selected to substantiate the perf@iiss rate ranges from 15-18% for set-associative
mance improvement obtained by our method gfches. Virtually, all the commercial cached embed-
cache locking. At this point we have simply includegled processors support set-associative cache exclu-

all the benchmarks that compiled and ran in our igjvely*, which establishes our proposed approach as
frastructure in the time available — the benchmarkc1
have not been selected to be favorable to us in any "' €xample, among the ARM processors, only one of the

. . 5 processors listed on ARM’s website offers a direct-mapped
way. Table 1 lists the benchmarks which are used forP PP
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Figure 6: Percentage improvement in instruction-cache missaver Figure 7: Improvement in execution time of the applications @aehe
cache with no locking for different associativities of theche. The with no locking for varying size of a 2-way set associativerea
cache size is kept fixed at 4 Kb. . .

improvement obtained by our cache locking mech-

a robust mechanism for improving memory systeamism. This relation is depicted in figure 8. The
performance. The average improvement in caselsinchmarks in all the figures 5 to 9 are sorted from
direct mapped cache is, not surprisingly, limited left to right in increasing order of I-cache miss rate
having only one way in a set amounts to extremelg illustrate the correlation between the miss rate and
high opportunity cost resulting in very little lockingthe overall execution time improvement.
Our goal is not to get improvements in direct-mappedRevisiting figure 7, we see that the benchmarks on
cache — we never expected to, and such cachesthgeright-hand side are marked "significant” for dif-
very rare in embedded systems — but the resuisent cache sizes. These are the benchmarks that
are presented for completeness, and show that iage a significant I-cache miss rate (which we de-
method never degrades performance, even manading as> 1.5%) for that cache size. For the bench-
a small improvement for direct mapped caches marks with significant I-cache miss rate, the run-
Next, the impact of instruction cache locking otime improvement from our cache locking method
run-time performance of various applications is aaverages 13.5% for a cache size of 8Kb. The av-
alyzed. Figure 7 shows the savings in runtime obrages are shown in figure 7 and figure 9 in the last
tained by using the instruction cache-locking. Contwo columns as AVERAGE and SIG-AVERAGE, for
paring Figure 5 and Figure 7 brings out two interest!l the benchmarks, and those with significant miss
ing observations. rates, respectively. For the benchmarks with very
First, even though the cache locking scheme lew I-cache miss rates, the benefits from cache lock-
sults in considerable improvement of instructioing are, not surprisingly, low —only 1.7 % for a 2Kb
cache miss rate consistently over all the appliceache.
tions, not all applications experience an improve- The 13.5% run-time improvement with cache
ment in run-time performance. The improvement iacking for benchmarks with a significant I-cache
I-cache miss rates translates to run-time performangiss rate is encouraging and shows the benefit of
improvement only for those applications where theur method. For some benchmarks the benefit is
overall I-cache miss rate is high. This is not surprigven higher — for example, the Rinjdal benchmark
ing since a technigue like ours to reduce the I-cachas a run-time gain of 23.5%. Overall we see that
miss rate will not help if it is not a problem to begirabout 20-60% of the benchmarks show significant
with. We analyzed the initial miss rate of these apnprovement, depending on the cache size and asso-
plications and found a direct correlation between irtativity used. The fact that not all benchmarks ben-
tial miss rate of applications and the execution tingdit from cache locking is not an indictment against
ache. our method — indeed there is a long history of re-

2For simulation purposes, the architectural constraint of n%?amh into techniques that benefit only a class of ap-
locking way 0 is relaxed for direct mapped cache.
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Figure 8: Graph depicting the correlation between theahitiss rate

8 Conclusion

In this paper, we have presented a instruction cache
locking mechanism for improving the run-time per-
formance of general embedded systems, extending
the applicability of cache locking beyond real time
systems. Our instruction cache locking scheme is
implemented inside a binary rewriter, implying that
our scheme can be applied to binaries compiled us-
ing any compiler and to legacy codes whose source
code is not available. Our results indicate that on av-

of the applications and execution time improvement obtainedly €rage, the proposed cache Iocking scheme achieves a
method. The miss rate and execution time results correspongBo 825% improvement in instruction cache miss rate and

2 way set associative cache
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a 13.5% improvement in run-time performance of in-
struction memory constrained applications.

In future work, we plan to extend the cache lock-
ing mechanisms for the data cache to further improve
the run-time performance of applications.
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