
MTSS: Multi Task Stack Sharing for Embedded

Systems

BHUVAN MIDDHA, MATTHEW SIMPSON and RAJEEV BARUA

University of Maryland

Out-of-memory errors are a serious source of unreliability in most embedded systems. Applications
run out of main memory because of the frequent difficulty of estimating the memory requirement
before deployment, either because it depends on input data, or because certain language features
prevent estimation. The typical lack of disks and virtual memory in embedded systems has
a serious consequence when an out-of-memory error occurs. Without swap space, the system
crashes if its memory footprint exceeds the available memory by even one byte.

This work improves reliability for multi-tasking embedded systems by proposing MTSS, a
multi-task stack sharing technique. If a task attempts to overflow the bounds of its allocated
stack space, MTSS grows its stack into the stack memory space allocated for other tasks. This
technique can avoid the out-of-memory error if the extra space recovered is enough to complete
execution. Experiments show that MTSS is able to recover an average of 54% of the stack space
allocated to the overflowing task in the free space of other tasks. In addition, unlike conventional
systems, MTSS detects memory overflows, allowing the possibility of remedial action or a graceful
exit if the recovered space is not enough.

Alternatively, MTSS can be used for decreasing the required physical memory of an embedded
system by reducing the initial memory allocated to each of the tasks and recovering the deficit by
sharing stack with other tasks.

The overheads of MTSS are low: the run-time and energy overheads are 3.1% and 3.2% on
an average. These are tolerable given reliability is the most important concern in virtually all
systems, ahead of other concerns such as run-time and energy.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors; D.4.5 [Op-
erating Systems]: Reliability; D.4.2 [Operating Systems]: Storage Management; C.3 [Special-
Purpose And Application-Based Systems]: Real-time and embedded systems

General Terms: Reliability, Languages

Additional Key Words and Phrases: Out-of-memory errors, run-time checks, reuse, data compres-
sion, stack overflow, heap overflow, reliability, cactus stack, meshed stack, virtual memory

1. INTRODUCTION

Memory overflow can be a serious problem in computing, but to different extents
in desktop and embedded systems. In desktop systems, virtual memory reduces
the effect of memory overflow because hardware-assisted virtual memory [Hennessy
and Patterson 2002] detects physical memory overflow and provides swap space
on the disk upon overflow. Further, virtual memory provides efficient sharing of
physical memory among processes because it discontiguously allocates fixed-sized
blocks of memory, called pages, as memory is demanded by each process. This
obviates the need for contiguous physical memory allocation for each process, which
in turn, reduces wastage of memory and enables processes to share the same physical

Author’s address: Rajeev Barua, Dept. of Electrical and Computer Engineering, University of
Maryland, College Park 20742, Maryland, USA

2 · Bhuvan Middha et al.

memory space.

This work seeks to provide the same memory-sharing functionality of virtual
memory in software because a great majority of embedded processors (we estimate
over 95%) have no virtual memory [Kleidermacher and Griglock 2001]. Examples of
embedded processor families that lack virtual memory support include Motorola’s
M68K series; Intel’s i960; ARM’s ARM7TDMI; ARM7TDMI-S and ARM966E-S;
TI’s MSP430; Atmel’s 8051; Analog Devices Blackfin; Xilinx’s Microblaze; Renesas
M32R; and NEC’s NEC750; among others. It is easy to see why: virtual memory
hardware leads to an increasein the system’s energy use, real-time bounds, area
cost, and design complexity. Typically, it checks that the address of every memory
access is within segment bounds and translates the address using a Translation
Look Aside Buffer (TLB). The energy cost of these frequent tasks can be pro-
hibitive [Panda et al. 2001]. Indeed, it was shown in a study [Montanaro et al.
1996] that virtual memory alone comprised 17% of their embedded system’s total
energy consumption, which is equivalent to a 20.5% increase in energy use from
virtual memory.Even a simpler virtual memory scheme providing segment protec-
tion but no virtual-to-physical address translation is not widely used because of its
energy cost. Additionally, this simplified scheme is not capable of sharing memory
among processes, which is our goal. A second major drawback of virtual memory
is that it can dramatically degrade real-time bounds because any memory reference
can potentially cause a TLB miss. These drawbacks are well-known [Durrant 2000]
explaining why virtual memory hardware is rare in embedded processors.

While the area cost of virtual memory is becoming less of a concern, energy
and real-time bounds are becoming increasingly important. We see nothing in
technology trends to indicate that the normalized cost of virtual memory, in energy
or real-time bounds, will decrease over time.

Lacking virtual memory, any embedded system will encounter a fatal error if its
memory footprint exceeds the physical memory by even one byte. Therefore, for
correct execution, the designer must ensure that the total memory footprint of all
the applications running concurrently (i.e., running or preempted before comple-
tion) fits in the available physical memory at all times.

Unfortunately, accurately estimating the maximum memory requirement of an
application at design time is difficult, increasing the chances of memory overflow. To
see why, consider that the application data is typically divided into three segments:
global, stack and heap. The size of the global segment is fixed at design time
whereas the stack and heap grow at run time. Let us consider stack memory first.
The maximum memory requirement of the stack can be accurately estimated by the
compiler as the longest path in the call graph of the program from main() to any leaf
procedure. However, stack size estimation from the call-graph fails for at least the
following six cases: (i) recursive functions, which cause the longest call-graph path
to be of unbounded length; (ii) virtual functions in object-oriented languages, which
result in a partially unknown call-graph; (iii) functions called through pointers,
which also result in a partially unknown call-graph; (iv) languages, such as GNU
C and C++, that allow stack arrays to be of run-time-dependent size; (v) calls to
the alloca() function, present in some dialects of C, which allow a block of a run-
time dependent size to be allocated on the stack; and (vi) interrupts, since their

MTSS: Multi Task Stack Sharing for Embedded Systems · 3

handlers allocate stack space that may be difficult to estimate. In all these cases,
estimating the stack size at design time is difficult. Indeed, in cases (i), (iv) and
(v) the maximum stack size is dependent on the input data and is unknowable at
design time. As an example, a recursive function invoked with a command line
argument can lead to an unbounded stack.

Estimating the heap size at design time is also difficult. The heap is typically
used for dynamic data structures such as linked lists, trees and graphs whose sizes
are highly input-dependent and thus, unknowable at design time.

Lacking precise design time estimation of stack and heap sizes, the usual in-
dustrial approach is to run the application on different data sets and observe the
maximum sizes of the stack and heap [Brylow et al. 2000]. Unfortunately, this ap-
proach of choosing the size of physical memory never guarantees an upper bound
on memory usage for all data sets, thus, memory overflow is still possible. Some-
times the memory requirement is multiplied by a safety factor; however, the factor
is often limited for cost reasons and it still does not give any guarantees to prevent
overflow.

The problem of out-of-memory faults has serious consequences on the reliability
of embedded systems. Lacking virtual memory support, memory overflow in an
embedded system can lead to loss of functionality of a controlled system, loss of
revenue, industrial accidents and even loss of life. In our past work [Biswas et al.
2006], we looked at the problem of overflow detection and the reuse of memory
within a task in order for the application to continue execution. This work extends
the past work to reuse stack memory available across different tasks in an embedded
system. We propose MTSS (Multi-Task Stack Sharing), a scheme to share stack
space after overflow in multi-tasking systems. This is a significant contribution
since multi-tasking is dramatically rising in embedded software development [Lamie
2000; Moore 2001] and there is a large amount of memory available for reuse across
different tasks.

Since MTSS builds upon our previous work [Biswas et al. 2006], it gains the
benefit of memory overflow detection. This allows for the possibility of remedial
action or a graceful exit if the recovered space is not enough to complete execution,
unlike conventional systems, where stack memory overflow goes undetected and
results in a fatal crash. Remedial action may include safely shutting down the
controlled system, flagging a warning sign, or transferring control of the controlled
system to a manual operator. Such remedial action may be invaluable in safety-
critical embedded systems.

The rest of the paper is organized as follows. Section 2 overviews MTSS. Section 3
outlines related work. Section 4 describes the run-time checks inserted by our
compiler to detect stack overflow. Section 5 describes optimizations to reduce the
overhead of run-time checks. Section 6 details our scheme for reusing stack space
across different tasks. Section 7 considers the impact of certain real-world issues
on our scheme. Section 8 specifies the systems to which MTSS applies. Section 9
describes our experimental platform. Section 10 discusses the results. Section 11
concludes.

4 · Bhuvan Middha et al.

T3T1 T2
space

unused
space

unused

of growth
Direction

T1 stack T2 stack T3 stack

Stack
Pointer

Fig. 1. Example showing wasted space in a simple version of a cactus stack layout. T1’s stack is
full but it cannot use the unused space in the stacks of T2 and T3.

2. OVERVIEW OF OUR SCHEME

Our scheme is based on the observation that the most commonly used stack layout
for multi-tasking systems, called a cactus stack [Moore 2001; Pizka 1999; Shan-
tanu Sardesai and Dasgupta 1998], wastes a significant amount of memory. In its
simplest version, a cactus stack allocates a separate stack for each task in the sys-
tem. Figure 1 shows a system with such a stack with each of three tasks T1, T2 and
T3 allocated a separate stack space. The space wasted in this layout is immediately
apparent, for example, when T1’s stack is full, the free space in the stacks of T2 and
T3 cannot be used to avoid the overflow in T1. The goal of MTSS is to enable any
overflowing task to use stack space available anywhere. With MTSS the overflow
will be postponed and hopefully avoided, thus increasing system reliability.

MTSS also applies to the more general case of a cactus stack where tasks that do
not run forever are allocated space only during the time they are active (running,
preempted or waiting for I/O). Here, tasks are spawned when triggered by internal
milestones or external events and their space is freed upon termination. Since
tasks spawn other tasks, the resulting tree-like representation of spawn relationships
inspires the cactus-stack name. Here, MTSS enables stack-sharing among currently
active tasks, rather than among all the potential tasks in the system.

MTSS recovers wasted space using an innovative paging system that has four
steps. First, run-time checks are inserted at the beginning of each procedure to
check for stack overflow. We show that many of these checks can be combined with
others using the rolling checks optimization to reduce the overhead while retaining
the guarantee that all overflows are detected. Our version of the optimizations are
an improved version of those in our earlier work [Biswas et al. 2006]. Second, if an
overflow is detected, then a fixed size block of memory called a page is allocated
in the free space of another task that has free space. The page is allocated in the
stack space at the far end of the stack base so that the chance that the native stack
in that space will itself overflow is reduced. If multiple tasks have free pages, then
the task with the least number of already allocated overflow pages is selected for
the discontiguous growth of the overflowing stack. Third, if the current overflow
page(s) is also filled, additional page(s) are allocated using the same scheme as
above. Fourth, run-time checks are inserted by the compiler at each procedure
return to check if the overflowing stack has withdrawn from the page. If the check
succeeds, then that page is released back to the free list of pages. Using this scheme,
all the free space is utilizable by any of the tasks in the system.

Our scheme offers the following advantages. First, it meets the objective of

MTSS: Multi Task Stack Sharing for Embedded Systems · 5

reusing memory across different tasks in the embedded system. Thus, a task will
not run out of memory if the required amount of free space is available in any
other task’s stack. This increases the reliability of the embedded system. When
only one task overflows, our results show that MTSS, on average, is able to recover
54% of the stack space allocated to the overflowing task in the free space of other
tasks. Second, our scheme incurs very little run-time overhead in the common
case when no stack in the system overflows. This is because in the common case,
only the run-time check for overflow is executed on the entry and return of some
procedures (after optimization). Results show that this overhead is less than 3.1%
in run-time on an average across various multi-tasking workloads. Furthermore, a
task grows in its own native stack until it runs out of space there; thus additional
run-time for linking a page is only incurred on an overflow. Third, our scheme
offers good real time guarantees since it never incurs a large episodic increase in
run-time. Rather, due to fixed- size page allocation, the overhead is spread out over
the program with a small overhead every time a page overflows. Results show that
the increase in worst-case execution time (WCET) averages less than 37.5% for our
benchmarks. This increase in the WCET is modest compared to the increase from
hardware-assisted virtual memory, which achieves sharing of space across stacks
like our scheme but incurs TLB misses that dramatically degrade the WCET.

In an alternate configuration, our scheme can be used to reduce the physical
memory needed for an embedded system without reducing its reliability. In this
configuration, the memory provided to each task is deliberately reduced to below
what it needs and the deficit is recovered from the stacks of other tasks. Experi-
ments show that MTSS used in this way can be used to reduce the memory required
in multi-tasking embedded systems by 15.7% on average, thus reducing the dollar
cost of the system.

3. RELATED WORK

The broad impact of this work is the reproduction in software of a portion of the
functionality of virtual memory hardware. Virtual memory hardware detects phys-
ical memory overflow and provides stack space on disk, if present, upon overflow.
Furthermore, it is capable of utilizing all the physical memory available in the sys-
tem, since it performs non-contiguous allocation of each process segment, including
stack, making use of fixed size pages. Thus, MTSS is not useful for systems with
virtual memory support. However, hardware virtual memory is unappealing for use
in embedded systems because, as mentioned earlier, many systems lack the support
for such hardware, and even if they did have such support, the increased CPU,
memory resources, and energy consumption associated with its functionality would
not be as low as they could be with a software-only solution. Energy consumption
is a particular concern since protection hardware is activated for each data and in-
struction memory access. Moreover, real-time guarantees are a concern for systems
using TLBs because of the possibility of TLB misses.

Specialized hardware schemes for providing memory protection in embedded sys-
tems have also been devised. The Mondrian Memory Protection (MMP) [Witchel
et al. 2002] scheme is a hardware approach designed to provide fine-grained memory
protection for systems requiring data sharing among processes. Another hardware

6 · Bhuvan Middha et al.

approach [Carbone 2004] provides basic segment-level protection without requir-
ing any TLBs, relying only on the permissions capability of the MMU. Similarly,
some embedded processors, like ARM926EJ-S, instead of supporting full virtual
memory hardware are equipped with a coprocessor known as Memory Protection
Unit (MPU) [Jagger and Seal 2000]. The MPU provides protection by dividing the
address space into regions with individual access permissions. All these specialized
schemes still incur some hardware and energy cost as compared to our software-only
scheme and more importantly, do not provide any way to share stack space among
different processes, which is the goal of this paper.

Several other attempts have been made to reuse memory across different tasks for
multi-threaded applications. One such attempt consists of allocating stacks on the
heap [Grunwald and Neves 1996; Behren et al. 2003]. In older schemes, which used
heap-based allocation of stacks [Bobrow and Wegbreit 1973; Hauck and Dent 1968],
the activation records are allocated on the heap, and explicitly deallocated when
the procedure returns. Thus, no task runs out of memory, unless there is no space
left globally. However, since the granularity of allocation is unequal, these schemes
suffer from the increased run-time overhead of allocation (malloc) and deallocation
(free) for each procedure call and return. The overheads of malloc and free are
often in the thousands of cycles per invocation because of the complexities of heap
management with requested blocks of arbitrary size.

In one of the recent stack-in-heap schemes [Behren et al. 2003] a stack man-
agement scheme is implemented that allows high-concurrency desktop servers to
support large number of threads without allocating a large contiguous portion of
virtual memory for their stacks. In their scheme, a thread’s stack is allocated in a
small fixed-size heap chunk, and is grown discontiguously into other heap chunks
when one is full. This scheme inserts run-time checks similar to our scheme, and
exhibit similar dynamic allocation efficiency, due to the presence of fixed-size heap
chunks. Four differences of our scheme with respect to [Behren et al. 2003] are as
follows: First, our scheme is applied, optimized, and evaluated for embedded sys-
tems; their scheme is applicable to desktop servers with virtual memory hardware.
Second, our scheme does not incur the extra run-time overhead of discontiguous
stack growth unless all the stack space in the task is exhausted, which is rare, while
their scheme would incur that overhead whenever the small fixed-size chunks run
out, which is more common. Third, our scheme is applied for a different goal, to
improve the reliability and physical memory utilization of the system, not their goal
of saving on virtual address space and reducing the load on segment tables. Fourth,
our evaluation measures the impact on code-size and energy consumption, which
are important for embedded systems; they do not, given their focus on servers. A
quantitative comparison against the Capriccio scheme is presented in section 10.

It is worth mentioning the relation of MTSS to garbage collection (GC) to MTSS.
GC [Hertz and Berger 2005] is meant to recover dead heap data automatically,
whereas MTSS is meant to share live stack data; thus they have different goals.
Nevertheless some have suggested allocating stack data on the heap, and using GC
to recover the dead stack frames [Appel 1987]. However, as that paper states, this
approach is preferable to stack allocation only when the amount of physical memory
far exceeds the data size (7X in their paper). This is very wasteful in memory, and

MTSS: Multi Task Stack Sharing for Embedded Systems · 7

not suitable for resource-constrained embedded systems that we target in MTSS.
Indeed this is too wasteful even in desktop systems - we do not know of a single
commercial or leading open-source compiler that allocates stack data on the heap
like suggested by [Appel 1987]. Of course, GC is very valuable for genuine heap
data, as is evidenced by its widespread use, but stack data should be allocated on
the stack for efficiency. In this scenario, MTSS is useful for sharing the stack.

Two other attempts have been made to recover unused stack space from non-
overflowing tasks in a multi-tasking system. In the first scheme, the run-time
data of several parallel tasks is allocated on a single stack, leading to a meshed
stack organization [Hogen and Loogen 1993]. In this scheme, new stack frames are
always generated on top of the stack, even if its parent procedure’s stack frame is
buried deep in the stack with the frames from other tasks in the middle. For this
reason, non-contiguous allocation of stack frames is supported by this methods. If
a procedure terminates and its activation record is not on the top of stack then
it is not removed, but marked as garbage. Special garbage collectors are then
invoked periodically to crunch the stack in place. However, the total run-time
with their scheme is higher because of the need for scanning the entire contents of
stack memory. A scan of memory is needed to correctly update pointers, as in any
copying garbage collector. No such scan of memory is needed in our scheme since
our scheme never copies any value in memory.

In the other attempt for reusing memory across tasks, each thread shares stacks
from a stack pool [Wong and Dageville 1994; Moore 2001]. In [Wong and Dageville
1994], the authors propose a hybrid stack sharing scheme in which each thread is
allocated a stack from a stack pool containing a fixed number of stacks. The size
of each stack in the stack pool can be set by the user. When the number of threads
are less than the number of stacks in the stack pool, it is the same as the cactus
stack. However, in the common case when the number of threads is more than
the number of stacks in the stack pool, all the threads share the stacks from the
stack pool, leading to greater memory savings. However, when the number of active
threads exceed the number of stacks in the stack pool, then on a context switch, in
addition to the processor state, the whole contents of the task stack also need to be
saved in the heap memory and similarly restored when the thread becomes active.
This leads to increased run-time overhead and a dramatic degradation in real-time
bounds. In addition, the hybrid stack sharing scheme does not fully accomplish our
objective in that an overflowing stack cannot use space available in other stacks
in the stack pool since no mechanism for sharing across stacks in the stack pool is
implemented.

MTSS is applicable to all systems that have blocking tasks. However, it is not
applicable to systems where only a single stack is used [Baker 1990]. This scenario
is discussed in more detail in section 8.

Methods for estimating the maximum depth of the stack [Regehr et al. 2003;
Brylow et al. 2001] are complementary to our work. Such work relies on analyzing
the call graph to compute a worst-case estimate of the stack size when possible.
Indeed, if for a particular program the size of the stack can be perfectly estimated
and no heap data is present then stack overflow cannot occur. The compiler should
turn off our scheme for such programs. However, the presence of heap data is not

8 · Bhuvan Middha et al.

rare in embedded benchmarks – a survey of the MIBench embedded benchmark
suite [Guthaus et al. 2001] shows that 17 out of the 29 benchmarks in that suite
have heap data. In conclusion, our scheme is valuable in three cases: (i) if the stack
size cannot be estimated because of the difficulties with estimation mentioned in
section 1; (ii) if the estimates are too conservative to be acceptable; or (iii) if heap
data is present. In all three cases, our scheme provides good back-up insurance
against stack overflow and allows the application to continue execution and in
many cases prevent the stack overflow altogether.

MTSS builds upon our previous work in [Biswas et al. 2006], which also uses run-
time checks to detect stack overflow and recovers space from within the overflowing
task. In our earlier work an overflowing stack is grown in dead global variables
and space freed by compressing live variables. Two differences of our scheme with
respect to [Biswas et al. 2006] are as follows. First, their scheme recovers space
from within a task and makes no attempt to share space across stacks. Thus it
has a different goal. Second, although the run-time checks for overflow are shared,
the optimizations on run-time checks (the rolling-checks optimization) in this work
are a new and improved version of those in our earlier work – our optimizations do
not require profile data, whereas those in the earlier work do. This is an important
practical advantage in compiler infrastructures. However, the work in [Biswas et al.
2006] is complimentary to our scheme in that it can be combined with MTSS to
result in a system that detects a stack overflow using run-time checks and recovers
space both within a task and across different tasks, leading to increased system
reliability.

4. RUN-TIME CHECKS TO DETECT STACK OVERFLOW

MTSS builds upon the software scheme for detecting stack overflow in our previous
work [Biswas et al. 2006]. This section briefly overviews the checks in that paper.
To see how stack overflow can be detected, consider that the stack grows only at
procedure calls. Figure 2 shows the check that we insert at the beginning of every
procedure. Without loss of generality, we assume that the stack grows from higher-
numbered addresses to lower. The stack pointer is decremented (not shown) at the
start of each procedure by the size of the current procedure’s frame. The code in
Figure 2 is inserted immediately after the stack pointer is decremented. Thus, the
check compares the updated stack pointer to the current allowable boundary of the
stack. If the check succeeds, then stack overflow has occurred.

Without MTSS, the stack boundary is specified by the cactus stack layout or it
is the heap pointer in case the heap is adjacent to the stack in question. MTSS
modifies the stack boundary to be the overflow pointer of that task instead. The
overflow pointers store the upper limit of overflow space for every task and are
explained in further detail in Section 6.

The run-time checks are easily extensible to cases where the stack size is known
only at run-time, such as with variable-sized stack arrays and stack allocation using
alloca(). Such cases pose no problems since the overflow checks, themselves, occur
at run-time, by which time the stack size becomes known. The details are in our
previous work [Biswas et al. 2006].

MTSS: Multi Task Stack Sharing for Embedded Systems · 9

1. if (Stack-Ptr < STACK BOUNDARY)
2. call routine to handle stack-overflow condition
3. }

Fig. 2. Code inserted at procedure entry for detecting stack overflow.

5. PROFILE INDEPENDENT ROLLING CHECKS OPTIMIZATION

The overheads of the added stack checks in the baseline scheme can be reduced by
the profile-dependent rolling checks optimization [Biswas et al. 2006]. The intuition
behind this optimization is that if a parent procedure calls a child procedure, then,
instead of checking for stack space at the start of both procedures, in certain cases,
it might be enough to check once at the start of the parent that there is enough space
for the stack frames of both parent and child procedures together. In this way, the
check for the child is ‘rolled’ into the check for the parent, eliminating the overhead
for the child. The reduction in overhead can be more than half if the rolled child is
called more frequently than the parent. The optimization implemented in [Biswas
et al. 2006] is profile- dependent because it considers each function in the order of
its frequency obtained through profile information. This ensures that the checks
are rolled out of the most frequently executed functions first and the overhead
reduction is the greatest. Further, it also uses an estimate of the stack size of the
application obtained through profiling to implement the optimization.

The profile-dependent rolling checks optimization reduces the overhead of run-
time checks but suffers from the following drawbacks. First, profile data is hard
to obtain in many applications before deployment. Second, some compiler infras-
tructures do not provide support for automatic profile collection and use. Third, a
profile-dependent analysis can yield poor results on other data sets which may have
significantly different access patterns than the profiled data sets. Fourth, rolling
checks out of library functions becomes hard, because the profile information within
a library function can be very different across different applications and data sets.

In this paper we propose a profile-independent scheme to implement the rolling
checks optimization. This scheme only depends on the application call graph and
the static stack frame sizes of each function. A profile-independent rolling checks
optimization scheme can handle library functions easily and does not suffer from
the drawbacks described above. Like the older version, this new version also retains
the guarantee that all memory overflows are detected by the checks.

Before we describe the implementation of our rolling checks optimization, let us
consider two scenarios in which rolling the checks is not legal: these must be checked
beforehand. First, if the call to the child from the parent is an unresolved virtual
function call, then the child’s check cannot be rolled to the parent since the exact
identity of the child is unknown at compile time. Similarly, if the child is called
through a function pointer, then the child’s check cannot be rolled. Second, rolling
checks can be permitted inside of recursive cycles in the application program but
not from inside recursive cycles to outside. In the latter case a recursive child can
call itself multiple times, making rolling to the non-recursive parent invalid.

We now list the three components of our rolling-checks optimization. The first
optimization is based on a new compiler analysis called certainty analysis. Cer-
tainty analysis aims to prove if one procedure always calls another procedure. The
intuition behind this analysis is that the call graph represents potential calls, not

10 · Bhuvan Middha et al.

actual calls. Therefore, it is possible that for a particular data set a parent may
not call a child procedure at all. Then, rolling the child’s check to the parent may
declare a premature out-of-memory condition in the parent when none would have
occurred otherwise. However, if a procedure f certainly calls g then the check in g

can be rolled into f with no fear of premature declaration, reducing the overhead
of the program. In case a procedure has multiple parents, its check can be rolled
only when all the parents call the procedure certainly. To find whether a static call
from f to g is dynamically certain we use post-dominator analysis, a well-known
standard data-flow analysis in compilers [Appel and Ginsburg 1998]. In particular,
f certainly calls g if the call site to g in f post-dominates the entry to f1. This
optimization can be transitively applied to a chain of calls. For example, when f

calls g and g calls h, then the checks for both g and h together can be rolled to f

provided both calls are certain.
The second of our rolling-checks optimizations is the zero-size optimization. This

optimization states that a procedure’s check for overflow can be removed if it al-
locates no stack space (i.e., its stack frame size is zero). Such a procedure arises
when (i) all its parameters and local variables are register-allocated by the compiler
and (ii) the procedure is a leaf procedure (one with no procedure calls inside it).
In the latter case the return address is maintained in a register and is not saved
to memory. Such procedures are fairly common in optimized GCC compilation of
large C benchmarks, as our results show.

The third and final of our rolling-checks optimizations is the limited-size opti-
mization. It rolls checks from a function whose frame size is less than a defined
threshold of K bytes to its parents. If K is small (e.g., 32 bytes) then it can be
added to the check of each parent function that already has a run-time check with-
out a large penalty of premature overflow declaration. Even if the parent does not
call the child and an overflow is declared prematurely, the total amount of stack
memory remaining must be less than K bytes. Hence, overflow will be declared
only when the memory has ≤ K bytes free, i.e., when the memory is nearly full,
mitigating the effects of premature declaration. Our choice of K is investigated in
the results section. This optimization can be cumulatively applied to a chain of
calls. For example, when f calls g and g calls h, then the checks for both g and
h together can be rolled to f provided the sum of their frame sizes ≤ K bytes.
Further, care is taken to ensure that if a function has its check rolled to its parent
(e.g. due to certainty optimization), then the check from its limited-size child (child
with a stack frame size ≤ K bytes) is not removed.

Next, we discuss the order in which each of the rolling-checks optimization can be
applied. First, we apply the certainty optimization, i.e., roll checks out of functions
that are certainly called by their parents. This optimization decreases the applica-
bility of the limited-size optimization because it increases the required frame size
of functions that are parents of limited-size calls. This can convert a limited-size
function (frame size ≤ K) into a non-limited-size function. Further, if a check is
rolled out of the function due to certainty then its check cannot be rolled out of
its limited-size children. On the other hand, applying the limited size optimization

1Program point y in a program is said to post-dominate program point x if every path from x to
the exit of the program always goes through y.

MTSS: Multi Task Stack Sharing for Embedded Systems · 11

first can require a few functions to have run-time checks (because their children’s
checks are rolled inside them) even though they are certainly called by their par-
ents, thereby decreasing the applicability of the certainty optimization. This is a
tradeoff and we chose the former option because of ease of implementation. Second,
we apply the zero size optimization. This optimization is independent of the other
two optimizations and can be applied in any order since zero-size procedures are
leaf procedures and do not call any other function. Further, rolling their checks
inside their parents does not change the applicability of other optimizations since
the frame size of parent is unaltered. Finally, we apply the limited-size optimiza-
tion, rolling checks out of limited-size children whose parents already have run-time
checks, unless it is possible to recursively roll both the checks to the parent’s parent
(this is possible only when the sum of frame sizes of both parent and child is ≤ K

bytes).
Now, we describe the overall implementation of the rolling checks optimization.

First, the top level routine considers all the functions in the application in the order
in which they appear in the application binary. Second, for each function we check if
the run-time check can be legally rolled to all its parents by testing for two scenarios
(mentioned earlier) in which rolling is not legal. Third, we apply the three rolling
checks optimizations in the order described in the previous paragraph. Fourth,
our compiler produces an output file that lists the functions that contain run-time
checks after optimization along with their effective frame sizes. The effective frame
size of a function is the sum of its own frame size, the maximum frame size among
its rolled children and, in case the function was the parent in any limited-size
optimization, then the user-defined limited-size threshold K is also added. This file
is given as input to the MTSS compiler, which recompiles the application binary
with the rolling information, inserting checks in appropriate functions.

A detailed pseudo-code of the rolling checks optimization appears in [Middha
2006].

The rolling checks optimization retains the guarantee that all stack memory over-
flows are detected by the optimized checks. Without optimizations, each function
has an overflow detection check; thus, all stack overflows will surely be detected in
the base case. Further, each of the three optimizations removes checks only when
they are unnecessary (when no overflow can occur), as detailed in the description
of each optimization. Hence, the optimized system too detects all stack overflows.

6. MULTI-TASK STACK SHARING

This section presents our scheme for reusing stack space across different tasks.
When a stack overflow is detected by the run-time checks in section 4, MTSS allows
the overflowing stack to grow in the free space available in the stacks of other tasks.
The scheme is implemented as follows: First, run-time checks are inserted by the
compiler to detect stack overflow in each task. Second, if an overflow is detected
in a task, then a fixed block of memory called a page is allocated in another task’s
stack that has free space and the overflowing task is grown into it.

Our basic scheme is best understood with the help of an example. Figure 3(a)
shows the normal behavior of the system in which none of the three tasks T1-
T3 are out of memory. Figure 3(b) shows the snapshot of the system when T1’s

12 · Bhuvan Middha et al.

��
��
��

��
��
��

�����
�����
�����

�����
�����
�����

overflowoverflow

T1 T2 T3

T1 stack T2 stack T3 stack

T1 T1T1T2 T3

Stack
pointer

Overflow
pointer

Direction
of growth

Page
5

Page Page Page Page
3 1 4 2

T1 overflowoverflowT1

(b)

(a)

(c)

Fig. 3. Example showing reuse across tasks (a) Normal operation of Cactus Stack (b) Overflow
handling in MTSS; and (c) Magnified view of overflow space

stack has overflowed its bounds into space in other tasks. Figure 3(c) shows a
magnified view of the overflow space in Figure 3(b). Let us now consider the steps
taken by our scheme when T1’s stack overflows. Since free space is available in
T2, page 1 is allocated in it and the stack is grown there. Thereafter, pages 2 to 5
are allocated alternately in the remaining space in T2 and T3 since, when a page
is allocated in one, the other becomes the stack space with the least amount of
overflow space. In this way, the overflow pages are distributed equally among the
stacks with free space, reducing the chance that the native stacks with free space
will also themselves overflow soon. If T1’s stack overflows again, then the system
is declared to be out-of-memory.

To implement the scheme, we use the following data structures. First, the set
of stack pointers for inactive (context-switched out) tasks is stored as an array in
memory. This information is maintained by the operating system, and it allows the
active task to access the other stacks upon overflow. Second, an array of overflow
pointers, one per task, is also maintained. The overflow pointer for a task stores
the upper limit of the overflow space for that task. The free space available in a
task stack is the difference between its stack pointer and overflow pointer. As an
example, the overflow pointer of task T2 is shown in Figure 3(b). Third, an array
of overflow started global boolean variables is also maintained with one element per
task. This variable is set to true if the task overflows its native stack bound and it
is set to false when the stack recedes back to its native space.

To implement MTSS, the stack check at the beginning of a procedure is modi-
fied from that in Figure 2 to that in Figure 4. As shown in Figure 4 the constant
STACK BOUNDARY in Figure 2 is replaced by the overflow pointer for that par-
ticular task, which forms the upper limit on the overflow space for that task. Fur-
thermore, if the task is already overflowing, then this condition is also detected and
handled. This is implemented by checking whether the overflow started variable is
asserted or not.

MTSS: Multi Task Stack Sharing for Embedded Systems · 13

1. if ((Stack-Ptr < Overflow-Ptr[current-task-id]) ||
(Overflow-Started[current-task-id])) {

/* Stack Overflow detected or already in overflow page */
2. Call routine to handle stack-overflow condition
3. }

Fig. 4. Code inserted at procedure entry for detecting stack overflow with MTSS.

1. if (Overflow-Started[current-task-id]) { /* Already in overflow mode */
2. if (Stack-Ptr + Size-of-current-stack-frame > Overflow-Pointer[overflow-task-id])

/* Stack has receded from the overflow page */
3. Overflow-Pointer[overflow-task-id] = Overflow-Pointer[overflow-task-id] - pagesize
4. }

Fig. 5. Code inserted at procedure exit for receding the overflow pointer.

Once an overflow is detected, our scheme allocates a fixed block of memory (page)
to grow the overflowing stack. The method of choosing the free pages is described
as follows: First, if there is only one task with free pages then that task is chosen for
growing the overflowing stack. Second, if there are multiple tasks having free pages
then the task with the least value of already allocated overflow pages is chosen for
discontiguous growth of the overflowing stack. This heuristic tries to minimize the
chances that the task with free space will itself overflow in the future because of
other tasks occupying its space. The heuristic works well as the results show.

When a task is in overflow space, the stack pointer of the task is compared
against the page boundary instead of the overflow pointer. Thereafter, if the stack
overflows in the page, then additional pages are allocated using the same scheme.
This is also the reason why the second condition for checking the overflow started
variable is added in the check for detecting stack overflow in Figure 4 since page
overflows need to be detected for overflowing stacks.

Once the out-of-stack condition is detected by the run-time checks, discontinuous
stack growth is achieved by changing the original stack pointer to the near end of
the overflow page. Thus, the stack pointer is set to Overflow-Ptr[overflow-task-
id] + pagesize, where overflow-task-id represents the ID number of the task where
MTSS grows the overflowing stack.

MTSS also requires the incoming arguments for a called procedure to be copied
to the overflow page in the case of an overflow. Consider that without MTSS, in
most compilers it is the job of the parent procedure to write values shared with
its child at the end of its stack frame – these are the child’s return address, old
frame pointer and any arguments passed through memory. After the call, the top of
the parent’s frame overlaps with the bottom of the child’s frame, thus allowing the
child access to these shared fields. However, with MTSS, when an overflow occurs
the child is not contiguous with the parent; thus unmodified accesses to the shared
locations are no longer correct. To preserve correct functionality, upon overflow
MTSS copies the shared values from the top of the parent’s frame to the bottom
of the child’s frame which are not longer contiguous with each other2. Since this

2It is safe to do this copying even when addresses rather than values are copied in the arguments.
This is because MTSS never moves any object, once it is allocated, for its entire lifetime. Once
a variable is allocated in a parent procedure’s frame, its address can be safely copied to its child
procedures since the variable is never moved until it dies (when the parent returns).

14 · Bhuvan Middha et al.

code is executed only in the extremely rare case of overflow, it does not slow down
the common case of no overflow.

When the run-time check at the start of procedure f() detects an overflow, it
adjusts the stack pointer to an overflow page, copies the incoming arguments to the
overflow frame and increments the overflow pointer. At this point, the procedure
f() is ready to run oblivious to the overflow. No further action is needed to allocate
the page since that is accomplished by incrementing the overflow pointer.

Receding the stack pointer Upon procedure return, MTSS must ensure that
the stack pointer is moved back correctly even when the parent stack frame is discon-
tiguous with the current stack frame. Thus simply incrementing the stack pointer
at the procedure return is not enough. (Recall that the stack grows from high
addresses to lower.) Fortunately most compilers (such as GCC) already maintain
the old frame pointer, which is the value of the stack pointer of the parent frame.
In these compilers, the stack pointer is assigned to the old frame pointer just before
each procedure’s return. In this case, MTSS needs to do nothing since this way of
receding the stack pointer is correct even when the parent stack frame is discontigu-
ous with the current stack frame. In a minority of compilers there is an option of
eliminating the old frame pointer – MTSS must disable this option, which ensures
that the old frame pointer is always used.

Receding the Overflow Pointer When a running task returns from a procedure,
its stack frame is de-allocated. If that frame was allocated on an overflow page,
then upon return it is possible that the overflow page becomes empty. If so, the
empty page must be recovered as free space by receding the overflow pointer. For
example in figure 3(c), when task T1 recedes from page 5 upon a procedure return,
then the empty space in page 5 must be recovered. We observe that recovering
the space in page 5 can be done by receding the overflow pointer for task T2 in
figure 3(b) to the right by the length of a page. Further, since a page can become
empty only upon procedure returns, the check for receding the overflow pointer needs
to be inserted at compile-time at every procedure return in each task.

The check that MTSS inserts at each procedure return to recede the overflow
pointer is shown in figure 5. Line 1 checks if overflow has started. If it has, then
line 2 checks if the stack pointer incremented by the current procedure’s frame
size is greater than the overflow pointer. This is the condition of stack underflow
in the page since the left side of the > is the value of the stack pointer after the
current frame is removed. (Recall that greater addresses are to the left in figure 3.)
This check should be inserted before the stack pointer is receded as described in
the previous section using the old frame pointer. If the check on line 2 detects an
underflow, then line 3 recedes the overflow pointer to the right by the length of one
page as shown.

Holes in the Overflow Space If multiple stacks overflow their bounds, then
the result could yield holes in the overflow space, as depicted in figure 6. To
understand figure 6, let us consider that there are three tasks T1-T3 in the system.
Let us further assume that task T1 overflows its bounds and starts growing in page
P1 in task T2 as shown in Figure 6(a). Subsequently, T2 also overflows its bounds
and starts growing in page P2 in task T3. Thereafter, both T1 and T2 overflow
their bounds once again leading to the allocation of pages P3 and P4 in task T3,

MTSS: Multi Task Stack Sharing for Embedded Systems · 15

����
����
����
����

����
����
����
����

��
��
��

��
��
��

��
��
��

��
��
��

����
����
����

����
����
����

��
��
��

��
��
��

��
��
��

��
��
��

����
����
����

����
����
����

T3

T1 stack

Direction
of growth

T1 T2

T3 stackT2 stack

(a)

(b)

(c)

P1

T3

Pointer
Overflow

Pointer
Stack

Stack
Pointer

Overflow
Pointer

P4

T1 P3 P2T2 P1 P4

T2T1 P2Hole
P3T3

Fig. 6. Example showing holes in overflow space (a) T1 overflows in T2 (b) T1 and T2 overflow
in T3; and (c) T1 recedes leaving holes in overflow space

as shown in Figure 6(b). Now, if the stack of T1 recedes back to its native space, it
vacates pages P1 and P3. This is shown in Figure 6(c). Of these, page P3 is called
a hole since it is not at the overflow-pointer-end of the overflow space, but, rather
in the middle. For this reason, it cannot be reclaimed by receding the overflow
pointer and it must be reclaimed through a different mechanism. We reclaim holes
by classifying every page in a task stack as either free or filled. This information is
maintained as a bit-vector per task, with a bit for each page. A value of 1 signifies
that the corresponding page is filled and a 0 indicates that it is free. Subsequently,
before allocating a free page, we traverse this bit-vector to check for the presence
of holes and allocate free pages in holes, if possible, before moving upwards in the
stack space. Although this situation does not arise if only one task overflows in
the system, it can happen and must be handled as above. In our experiments, we
observe that the presence of holes is rare. Due to the possibility of the holes in the
overflow space, the body of the check in Figure 5 is modified so that the overflow
pointer is receded only when the receding stack page is at the overflow-pointer-end
of the overflow space.
Multiple-Page Allocations The base scheme to share the stacks among mul-
tiple tasks is enhanced by incorporating multiple page allocations. Multiple page
allocations are required if the procedure frame of the overflowing task is larger than
a single page because a procedure frame cannot be allocated discontiguously. If it
were, then the addressing mechanism of stack variables would have to be changed
upon overflow leading to an extremely complex implementation. Multiple page al-
locations in our scheme are implemented as follows. First, the required number of
pages are calculated by dividing the frame size with the page size and taking the
ceiling. Second, each task is searched for the availability of multiple pages instead
of a single page. If the overflow space contains holes, then the scheme looks for the
availability of contiguous holes equal to the number of pages required. Third, the
check for page overflow is modified to handle multiple pages, i.e., the stack is now
declared to have overflown its page, if it grows by an amount equal to the number of
pages allocated to it. Fourth, the overflow pointer is grown and receded by number
of allocated pages rather than a single page.

Our scheme declares a system to be out of memory if there is no task in the
system that has a number of pages corresponding to a procedure frame available

16 · Bhuvan Middha et al.

contiguously, even though the total space available discontiguously might be larger.
We do not consider compaction of holes to create more space because this would
adversely impact the real time guarantees.

Choice of Page Size Next, we discuss why allocating fixed-size blocks of memory
is advantageous for our scheme and the choice of page size for our scheme. Allocat-
ing fixed size blocks of memory gives us at least three advantages over variable-sized
allocation. First, variable-sized allocation leads to external fragmentation (holes in
the memory of a non-desired size). This results in increased run-time for allocation
upon overflow as compared to a fixed-size allocation since allocating memory re-
quires a scan through all the holes in order to determine a fit. Second, for variable-
sized allocation a mechanism to merge holes, such as compaction is usually also
needed to limit the number of small, useless holes. This will severely degrade the
real-time guarantees of the reuse scheme. Third, if the variable-sized allocation
scheme allocates exactly the amount of stack space required by the overflowing
procedure, then the number of page overflows may increase. For example, if the
overflowing procedure in turn calls another procedure, it will result in another page
overflow. On the other hand, allocating additional memory than required results
in wasted space and makes the implementation more complex.

With fixed size allocation, page size is an important consideration. Both small
and large page sizes have their own advantages and disadvantages, as in hardware
virtual memory, but with different tradeoffs. Fixed-size allocation leads to internal
fragmentation (space wasted within a page if it is too small to be used by the next
stack frame). Smaller page sizes increase internal fragmentation as compared to
larger page sizes and worsen the real-time guarantees of the system. This is because
the probability of a page overflow increases as the page size reduces. This also leads
to increased run-time overhead in the presence of stack overflows. However, smaller
pages are better able to utilize the remaining free space in a stack because it is
possible to allocate an overflow page even if the space remaining in a task stack is
small. Our experiments explore the choice of page size further.

Re-using Heap for Stack Our method can be easily extended to allow for reuse
of the heap when a stack frame overflows and there is no stack space available across
all the tasks in the system. In a multi-tasking system, the heap is shared by all the
tasks; therefore, we can inherit the scheme proposed in our previous work [Biswas
et al. 2006] that allows an overflowing stack to be grown discontiguously in the
heap. Since the method to reuse the heap is inherited from previous work, to be
fair, we do not count the space recovered from the heap towards the benefit from
our method in our experiments.

Alloca Function Calls Alloca() library function calls allocate a run-time de-
pendent amount of memory, specified in their argument, on the stack frame of the
calling procedure. They are handled by adding their size argument at run-time to
the frame size, and requesting the resulting size from MTSS. Since the size of a
requested frame in MTSS is only needed at run-time, this poses no problem.

The above solution does not work when alloca’s argument is not only run-time
dependent, but computed inside the function, since this computation cannot pro-
ceed until the frame is allocated, which has not happened yet. We handle this case
by converting alloca into a heap object. This increases the run-time overhead. For-

MTSS: Multi Task Stack Sharing for Embedded Systems · 17

tunately, none of the 29 benchmarks in the MIbench suite had such an occurrence
of alloca function, nor do any of our 24 benchmarks. Hence, we can assume that
this is an extremely rare scenario, and the increased overhead would be negligible
in practice for most applications.
Alternative with No Initial Stack An alternative implementation of the
scheme consists of giving zero bytes to each task stack in the beginning, and then
to demand page in stack blocks as necessary from a common stack memory pool.
However, this scheme will have the following disadvantages: First, it will incur
increased run-time and energy overhead as the number of page overflows will in-
crease. Second, it will lead to increased fragmentation of memory generating more
holes. This is because memory will now be allocated from a common pool on pro-
cedure calls, and freed on procedure returns, which will depend on the control flow
of each task, leading to the generation of additional holes. This will reduce mem-
ory utilization. To offset the reduction in memory utilization, compaction of holes
might be necessary, which will spoil the real time guarantees. Consequent to these
drawbacks, this alternative with a zero-size initial stack is not used by MTSS.

7. REAL WORLD CONSIDERATIONS

Dynamic Tasks and Multithreading MTSS can be extended to handle the
creation and deletion of dynamic tasks in the system. This is implemented as
follows: First, the operating system is modified to notify our system about the
creation and deletion of new tasks. Second, the algorithm is modified to handle
variable number of tasks while considering tasks for sharing. Third, a pool of stack
space is maintained for dynamic tasks. Any incoming dynamic task can be allocated
any amount of initial space – an estimate can be used if available, or simply one
page can be conservatively allocated at the cost of more frequent future overflows.
The same scheme can be used for multi-threading, which corresponds to spawning
a new task at different places in the program, thereby creating a dynamic task in
the system or joining a spawned task, thereby deleting a task from the system.
Communicating Tasks MTSS does not impact the correctness of implement-
ing communicating tasks. To understand this, consider that there are primarily
two methods of intertask communication [Avi Silberschatz]. First, tasks may use
shared memory as a means to exchange data.The shared memory is located in the
memory space of one task, which other tasks, if permitted can access. This shared
memory space is never allocated as part of the stack segment of the memory; in-
stead, it is similar to the global segment in its characteristics. Indeed the stack only
stores local variables which always are restricted in scope to only one process. Since
MTSS only modifies the stack layout and has no impact on shared global data, the
correctness of the implementation remains unchanged. Further, since MTSS does
not touch the shared memory segment, no additional synchronization problems are
introduced.Second, tasks can use message passing as a means to exchange data. In
this mode, explicit send and receive messages are exchanged for communication.
This mode is primarily used when the two tasks reside on different machines across
the network. MTSS can be used with message passing as well since all data, in-
cluding stack data, is addressable only by its local process with message passing.
Thus MTSS can be used to share the stack space with any other tasks on the same

18 · Bhuvan Middha et al.

processor. Since MTSS maintains send/receive buffers on the stack as contigu-
ous blocks, communication routines accessing those routines work unchanged with
MTSS.

Simultaneous Access and Synchronization Since MTSS handles multiple
tasks, deadlocks and race conditions can occur when shared variables are accessed.
However, MTSS does not require variables to be protected (e.g., using semaphores)
in the common case when the stack does not overflow. To understand why, con-
sider the check shown in Figure 4 to detect overflow. Here, the Stack-Ptr, and
overflow started variables are local to each task’s context; however, Overflow-Ptr
is shared across multiple tasks and may need to be protected from simultaneous
access.

The only potential race condition involving an access of Overflow-Ptr can be seen
by looking at figure 3(b). In the figure, suppose Overflow-Ptr[T2] has been read by
T2, but thereafter T2 is preempted by a task T1 before the comparison (Stack-Ptr

< Overflow-Ptr[T2]) is performed. In this case task T1 can overflow into task
T2, allocate a page and increment Overflow-Ptr[T2]. When T2 gets the CPU again,
it will perform the comparison using the old value of Overflow-Ptr[T2]. This can
potentially lead to incorrect semantics since T2’s latest stack frame could overlap
in memory with an overflow page if there is not enough space between the two.

However, we prove that this incorrect overlap of memory can never happen even
in the presence of the race condition above. Suppose the above race condition
happens. There are two possible cases of what might happen just when control
switches to task T1. In the first case, there is no space on the stack of T2 to allocate
the pages needed by T1. In the second case, there is space for the needed pages. If
we can prove that correct semantics are preserved in both cases, we are done.

If there is no indeed space for a page in T2 (first case), then T1 will read Overflow-
Ptr[T2] from memory and realize that there is no space in T2’s stack for the required
pages. Hence it will not allocate the pages and the problem scenario cannot occur.

If there is space for required pages in T2 (second case), then T1 will read Overflow-
Ptr[T2] from memory, find that there is space, and will allocate a page in T2’s stack.
However this is not a problem because of a key observation: the check for overflow
is inserted after a procedure decrements Stack-Ptr to allocate space for its frame.
Hence, by the time control switches to T1, the procedure currently executing in T2

would have already allocated its stack frame and needs no more space. Moreover
since T1 also has space for its required overflow page (by assumption), this overflow
page cannot overlap with the stack of T2. Therefore, here too, no incorrect overlap
of T2’s latest stack frame can happen with an overflow page.

Since both cases above are error-free, this proves that no synchronization lock is
required to protect the accesses to Overflow-Ptr[T2] in the common case when the
stack does not overflow. To see what this means for the code, we make another
observation: In line 1 of Figure 4, if Overflow-Started is true, the result of the
check (Stack-Ptr < Overflow-Ptr[T2]) is irrelevant to the result of the check.
Combining both these observations, we see that regardless of whether overflow has
started or not, no lock is needed for accessing Overflow-Ptr on line 1 of Figure 4.

In the uncommon case when a task stack overflows its bounds, MTSS requires a
mutual exclusion lock to protect Overflow-Ptr against simultaneous access. Such

MTSS: Multi Task Stack Sharing for Embedded Systems · 19

accesses occur inside the body of the check in Figure 4 (not shown in Figure).
Our implementation uses the pthread mutex type variable available in the pthreads
library, although any mutual exclusion mechanism can be used. Our ARM experi-
mental platform has hardware support for an atomic test-and-set instruction which
reduces the lock/unlock overhead to a few cycles. However, even if hardware sup-
port were absent, it would make no difference to the common-case overhead since
the locking overhead is not encountered until after overflow. Hence, the overhead
of locking is largely irrelevant to the efficiency of MTSS.
Handling Interrupts The interrupt stack is either separate or part of the task
stack in any embedded system. When interrupt frames are allocated on the task
stack, the overhead of switching contexts is lower but the memory required increases
since the stack frames of interrupt handlers need to be allocated on each of the
task’s stacks. This multiplies their space usage by the number of tasks. On the other
hand, when interrupts have their own stack the memory requirement is lower but
the overhead of switching contexts is higher. MTSS can handle both configurations
provided interrupt service routines (ISRs) are compiled with our compiler and the
necessary run-time checks are inserted. To understand why, consider that in the
case of separate interrupt stacks, if the interrupt stack overflow is detected by the
run-time check during the execution of an ISR, then MTSS can start overflowing the
interrupt stack in some other task stack by allocating necessary pages as described in
Section 6. In the case when ISR’s are executed on the task stack, the corresponding
task stack overflow will be detected by the run-time check during the execution
of ISR and another appropriate task will be selected by MTSS for growing the
overflowing task.

8. APPLICABLE SYSTEMS

Background Embedded systems can be typically classified as real-time systems
or non real-time systems. Further, based on the scheduling alternatives, a particular
system can be classified as either preemptive or non-preemptive. In non-preemptive
systems, a thread that has started to execute is always allowed to execute until one
of two things happens: either the executing thread is terminated, or more commonly
the executing thread enters a waiting or a blocking state, for I/O or by calling a
sleep function. In preemptive systems, in addition to the above conditions, a task
is preempted whenever a high priority task becomes ready to run. Further, in case
of preemptive systems with same-priority tasks the scheduler is invoked within a
defined period, and it context switches the currently running tasks with another task
that is ready to run (round-robin scheduling). Most real time systems implement
priority-based preemptive scheduling, which implies that at every instant of time
the highest priority task that is ready to run will be the task that is running.

Similarly, tasks in embedded systems can be classified as single-shot tasks or
blocking tasks. A single-shot task is one that can have only three different states –
ready, running and terminated. When it becomes ready to run, it enters the ready
state. Once it gets the CPU, it enters the running state. If it is preempted by a
higher priority task, it can go back to the ready state and when it is finished, it
enters the terminated state. A single-shot task has no waiting state – the task does
not yield the processor and waits for an event to occur. In comparison, a blocking

20 · Bhuvan Middha et al.

task has an extra state: the waiting state. This means that a blocking task can yield
the processor and wait for a time or an event to occur, such as an I/O completion
message or an external-environment event. Unlike single-shot tasks, many blocking
tasks run forever and lower priority tasks can run while the higher priority ones are
in their waiting state.

Non-applicable systems MTSS is an approach to share stacks among multiple
tasks and is not applicable to systems in which a single stack is used. A single stack
can be used for multiple tasks if they are all single-shot tasks, either preemptive or
non-preemptive. To see why, consider that in the non-preemptive case, single-shot
tasks run to completion whenever they start. Hence, only one task has a stack at
any one time and one shared stack is, therefore, sufficient. The size of the shared
stack is chosen to be the maximum required among all the tasks in the system.

Less obvious is the fact that in the case of preemptive systems with single-shot
tasks, all the tasks can share a single stack. They can do so by interleaving their
stack frames in a single combined stack. A scheme that does this for fixed-priority
tasks is described in [Baker 1990]. In this scheme, when a task T1 is preempted by
a higher priority task T2, T1 continues to hold its stack space and T2 is allocated
space immediately above T1 in the same stack. The only special requirement is that
T1 cannot resume until all tasks occupying space above it have completed. This
will always be the case since T1 will be preempted by higher priority tasks only.
Moreover, none of the tasks will enter into a blocking state thus making a single
stack feasible. In both these cases of single-shot tasks, since there is only a single
stack, MTSS is not needed.

Applicable systems Conversely, MTSS is applicable to all systems without vir-
tual memory that have blocking tasks regardless of whether they are preemptive or
non-preemptive, whether they are real-time or not and irrespective of their schedul-
ing policy. This class represents a majority of the multi-tasked systems used today.
To see why MTSS applies to blocking tasks we need to prove that such tasks cannot
share a single stack. This is proved below.

To understand the proof, we consider a system with n blocking tasks, T1 to Tn

in increasing order of priority. Now, consider that at a particular point in time Ti

is running and assume that after a certain point in time Ti goes into a blocking
state by calling the sleep function or by performing I/O. Since Ti has not finished
execution yet, its stack needs to be retained. Next, we assume that Ti is replaced
by task Tj (j < i) by the scheduler. When Ti finishes its I/O it becomes active,
preempting Tj since Ti has a higher priority. The claim is that a single stack S is not
possible in this scenario. Suppose there was a single stack. Then, stack frames for
Tj would be allocated immediately above those for Ti in the single stack. When Ti

tries to resume execution, it will not be able to grow any further contiguously since
the space above it would be occupied by Tj, preventing Ti’s execution. Therefore
Ti and Tj must have different stacks.

Even in the case of non-preemptive systems, we can arrive at the same conclusion.
This is because although Ti cannot preempt Tj , when it becomes active Tj can itself
enter a blocking state after some point of time. This will again prevent Ti from
beginning execution since Tj occupies the top of the stack. Further, it is practically
infeasible to wait for Tj to complete execution (after coming out of its blocking

MTSS: Multi Task Stack Sharing for Embedded Systems · 21

state) before Ti can begin execution because of the significant delays that high-
priority tasks such as Ti will incur. This proves that any system with blocking
threads requires more than one stack, making MTSS feasible.

Some real time systems implement the scheduler proposed in [Wang and Saksena
1999]. They propose a scheme for scheduling fixed priority tasks with preemption
thresholds. This scheme introduces the notion of a preemption threshold in addi-
tion to a priority of a task to develop a new scheduling model, which unifies the
concept of preemptive and non-preemptive scheduling. They claim that using their
model, a set of periodic and sporadic tasks can be efficiently implemented using a
small number of event-handling tasks. A smaller number of tasks at implementa-
tion results in fewer pre-emptions and context switches. Further, it also results in
significant memory savings due to the need for fewer stacks. Thus, their scheme
substantially reduces the stack requirement of the system. However, MTSS is still
applicable in this system, since it contains more than one stack which can then be
shared amongst tasks.

9. EXPERIMENTAL SETUP

This section presents the experimental platform used for evaluating our scheme. We
have implemented our scheme inside the ARM GCC v3.4.3 cross compiler [GCC
] targeting the ARM7TDMI [ARM 2003] embedded processor. The ARM GCC
compiler is suitably modified to insert run-time checks as required by our method.

Since we run multi-tasking applications, we also need the support of an oper-
ating system for scheduling the application. We use the µClinux operating sys-
tem [Dionne 1998], modified as needed by the proposed techniques. µClinux is a
derivative of the Linux 2.0 kernel intended for micro-controllers without Memory
Management Units, precisely the systems to which MTSS applies. We use the de-
fault scheduling policy for non-real-time systems for scheduling the different tasks
in the system, which chooses processes based on their dynamic priority. The dy-
namic priority is based on the nice level of each task and is increased for each time
quantum the process is ready to run, but is denied to run by the scheduler. This
ensures fair progress among all processes. Other scheduling policies can also be
used with MTSS. MTSS is conceptually equally applicable to all scheduling poli-
cies for blocking tasks, although the memory recovered may slightly differ because
of variations in the exact timings when processes switch contexts. We modify the
operating system to provide a new system call that returns the value of the stack
pointer of an inactive (context-switched-out) task. This is implemented by saving
the value of the stack pointer of a task on a context switch into the array of stack
pointers maintained by our method. This information is utilized by our scheme to
select the task for growing the overflowing stack.

We use the public domain, cycle accurate simulator for the ARM v5 ISA targeting
the ARM7TDMI embedded processor for running the operating system as well as
the multi-tasking applications. This simulator is available as part of the GDB
v6.3 distribution [GDB]. We enhance the simulator to enable it to run µClinux

along with the application. Specifically, we add support for I/O modules such
as timers and interrupt controllers required by the Operating System. Thus, the
overall framework consists of multi-tasking applications running on top of µClinux

22 · Bhuvan Middha et al.

Workload Benchmark Description Lines Allocated
of Stack

Code (Bytes)

Automotive

Basicmath Basic Math 132 1024
Qsort Quick Sort Algorithm 78 65536
Bitcnt Bit Manipulation 383 1024
Susan Digital Image Processing 2183 13824

Security

Blowfish Block Cipher Encryption 2362 6144
PGP Public Key Encryption 34973 65536
Rijndael Block Cipher Encryption 1812 1536
SHA Secure Hash Algorithm 286 10240

Telecomm

ADPCM Pulse Code Modulation 759 768
FFT Fast Fourier Transform 505 1280
CRC32 Cyclic Redundancy Check 307 1024
GSM Voice Encoding/Decoding 6062 2176

Network

Dijkstra Shortest Path Algorithm 371 1216
Patricia Tries for Network Routing Tables 620 1280
Treeadd Recursive sum in balanced B-tree 287 1280
TSP Traveling Salesman Problem 603 1856

Mediabench

Histogram Global Histogram Equalization 243 1180
Edge-Detect Image Edge Detection 358 1224
G721 Voice Compression 1800 1404
Pegwit Public Key Encryption 7182 10668

Ptrdist

Anagram Anagram Searching 674 1444
Ks Graph Partitioning Tool 805 2732
Ft MST computation 2189 1276
Yacr2 Channel Router 4001 1648

Table I. Multi-tasking benchmark programs and characteristics

operating system, which in turn runs on top of the ARM GDB simulator. Since
we use a full-fledged operating system, our setup accurately models all the software
used in a real embedded system.

The energy consumed by programs is estimated using the instruction-level power
model proposed in [Tiwari et al. 1994]. In that model, the overall energy used
is estimated as the sum total of energy consumed by each instruction, where the
energy for each instruction type (opcode) is estimated using synthetic workloads
composing only of that instruction in an infinite loop and measuring the current
drawn by the circuit. Thereafter no current measurements are needed per applica-
tion; instead the pre-calculated energy per instruction type is used to calculate the
total. Experimental results in that paper show that the approach is quite accurate
and has a small percentage error in estimating the energy use. The energy numbers
for each ARM instruction are extracted from [Sinha and Chandrakasan 2001]. We
modified our simulator to add the energy of each instruction, based on its opcode,
to a counter measuring the total energy.

10. RESULTS

This section presents the results for the proposed scheme for reusing stack across
multiple tasks in an embedded system. Since real multi-tasking workloads are hard

MTSS: Multi Task Stack Sharing for Embedded Systems · 23

to find3, the multi-tasking workloads that are used for evaluation are constructed by
combining together multiple benchmarks from MIBench, PTRDist and Mediabench
embedded benchmark suites. Table I shows the names and characteristics of the
resulting workloads that we use for our evaluation. A domain in the embedded
benchmark suite (such as automotive domain in the MIBench suite) is combined to
form a multi-tasking workload. Each domain targets a specific embedded market,
and typical embedded multi-tasking workloads for a domain consist of one or more
similar tasks. Hence, combining benchmarks in this way forms a reasonable set for
evaluation. We evaluate 6 workloads, each containing four benchmarks, for a total
of 24 benchmarks. The first four workloads are from the MIBench suite; the last
two are given the names of their suites. Unless otherwise stated, all the results are
generated for a fixed page size of 128 bytes.

The initial stack memory allocated to each task as shown in column 5 in Table I,
is calculated as the maximum observed stack size across different input data sets.
This guarantees that a task does not overflow with its initial allocation of stack for
those data sets. We then perform several experiments, in which a task is allocated
less stack space than required, causing it to overflow. This activates MTSS, allowing
stacks to be shared across all tasks.
Overheads of run-time checks Table II shows the overheads due to the inser-
tion of run-time checks to detect overflow. The second column reports the run-time
overhead without any optimization, whereas the third column records the reduced
run-time overhead after applying the profile independent rolling-checks optimiza-
tion proposed in Section 5. Similarly the other columns record the code size over-
heads and energy overheads respectively. Comparing the different columns, we
observe that the run-time overhead reduces from 12.28% to 3.05%; the reduction
is significant and makes MTSS a feasible scheme for embedded systems. Similarly,
energy overheads are also reduced considerably and go down from 12.82% to 3.18%
after applying the rolling-checks optimization. MTSS suffers from increased code
size overheads because in each function we insert two checks, one at the beginning
of the function to detect stack overflow and another at the function return to cor-
rectly recede the overflow pointer as described in Section 6. Both these checks are
inlined inside each function to reduce the run-time and energy overhead. However,
this increases the code size overhead. If code size is important for a particular
system then the checks can be outlined. Our experiments show outlining the checks
brings down the code size overhead to less than 2.5%, but increases the run-time
overhead to about 5% on an average. Since run-time and energy are usually more
important than code-size, outlining is not used. In summary, these results show
that the safety run-time checks required for implementation of MTSS are possible
with very low overhead.

The ptrdist workload has higher run-time overheads as compared to other work-
loads because of the presence of multiple benchmarks with small-sized recursive
functions. Recursive functions lead to the execution of run-time checks for every
invocation with few intervening instructions; moreover these checks cannot be rolled
as explained in Section 5. Both these factors increase overhead.

3None of the publicly available embedded benchmarks such as EEMBC, MIBench and Ptrdist
provide multi-tasking workloads

24 · Bhuvan Middha et al.

Workload Run-time Code Size Energy
Increase(%) Increase(%) Increase(%)

Without With Without With Without With
Optim- Optim- Optim- Optim- Optim- Optim-
ization ization ization ization ization ization

Automotive 4.18 3.90 37.69 7.04 4.09 4.03

Security 11.54 2.72 32.44 4.45 13.14 2.17

Telecomm 2.74 0.72 38.25 7.70 2.84 0.48

Network 10.51 2.20 44.66 7.15 10.49 2.23

Mediabench 21.75 2.79 36.03 7.21 22.63 3.52

Ptrdist 22.97 5.97 39.69 6.75 23.72 6.63

Average 12.28 3.05 38.13 6.72 12.82 3.18

Table II. Overheads for Safety Checks

Figure 7 shows the execution overhead of the run-time checks from different
components of rolling checks optimization. As described in Section 5, the rolling
checks optimization is split up into three parts: the zero size optimization that rolls
checks out of functions with frame size of zero, the certainty optimization that rolls
checks out of functions that are certainly called by their parents, and the limited size
optimization that rolls checks out of functions whose frame size is less than a certain
user defined threshold. The first bar in Figure 7 shows the execution overhead
incurred when the rolling checks optimization is not implemented. The second
bar shows the run-time overhead incurred when only the zero size optimization
is implemented. The third bar shows the run-time overhead incurred when both
certainity and zero size optimization are implemented and the third bar shows the
execution overhead when all three optimizations are implemented.

These results indicate that the certainty optimization yields a small reduction in
run-time overhead, but that both the zero size and limited size optimizations have
a significant impact. The zero size optimization can eliminate the checks on around
30% of the dynamic procedure invocations since they have a zero-size stack frame.
For the threshold value of K=128 bytes, the limited size optimization can optimize
away checks from another 40% of dynamic procedure invocations on an average.

We observe that the performance of the limited size optimization varies signifi-
cantly with the threshold value K. The limited size optimization, as explained in
Section 5, rolls checks out of functions that have a frame size of less than K bytes.
Therefore, as K increases, the number of functions containing run-time checks will
decrease, reducing the run-time overhead. Figure 8 plots the run-time overhead
across all the workloads for different values of limited size threshold K. As shown
in the figure, the run-time overhead steadily reduces from 4.7% to 3.05% as the
threshold increases from K=32 bytes to K=128 bytes. Clearly, if we continue to
increase the limited size threshold, the overhead will reduce to zero because all
checks will then be rolled to the main function in the application. Increasing K

will reduce the run-time overhead, but will increase the risk of premature declara-
tion, since MTSS will declare an overflow when the memory has less than K bytes
free. In this paper, we use a limited threshold value of 128 bytes for all library
functions as a good profile-independent compromise value. However, for applica-
tion functions, since it is trivial to obtain the application stack size by profiling, we
use 10% of application stack size as the limited size threshold. This still keeps the

MTSS: Multi Task Stack Sharing for Embedded Systems · 25

chance of premature overflow declartion low, while reducing the run-time overhead.

0.00

5.00

10.00

15.00

20.00

25.00

Au
to

m
ot

iv
e

S
ec

ur
ity

Te
le
co

m
m

N
et
w
or

k

M
ed

ia
be

nc
h

Pt
rd

is
t

Av
er

ag
e

R
u

n
-t

im
e
 O

v
e
r
h

e
a
d

 (
%

)

Without Optimization

Zero Size

Zero Size + Certainty

Zero Size + Certainty + Limited Size

Fig. 7. Run-time overhead contribution to over-
flow detection checks from each component of
the rolling checks optimization.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Au
to
m
ot
iv
e

S
ec
ur
ity

Te
le
co
m
m

N
et
w
or
k

M
ed
ia
be
nc
h

Pt
rd
is
t

Av
er
ag
e

R
u

n
-t

im
e
 O

v
e
r
h

e
a
d

 (
%

)

K=32B K=64B K=128B

Fig. 8. Impact of varying limited size threshold
on run-time overhead.

Comparison with profile-dependent rolling checks optimization Table III
shows the comparison of the profile-independent rolling checks optimization with
the profile-dependent rolling-checks optimization presented in [Biswas et al. 2006].
The profile-dependent scheme is described in brief as follows: First, it considers all
functions in decreasing order of their frequency count. This ensures that the checks
are rolled from more frequently called functions first. Second, for each function it
checks if the rolling is legal or not. These checks are similar to the legality checks
described in section 5. Third, since each function call is a potential function call,
which may not be dynamically executed, it rolls checks from function g to f only
when the sum of stack sizes of g and f together is less than 10% of the stack size of
the application. This reduces the penalty of pre-mature overflow declaration. Thus,
the profile-dependent scheme has an equivalent limited-size optimization proposed
in section 5.

Table III shows that the average run-time overhead of MTSS is 3.05% Vs 5.45%
for the profile-dependent optimization. The profile-dependent scheme suffers higher
overheads because it does not have an equivalent for the certainty optimization
proposed in MTSS, in which case the check from a function g is rolled into its
parent f , irrespective of the stack frame sizes, if f calls g certainly. Further, it does
not explicitly implements zero-size optimization. So, a function with a frame size
of zero may still have a runtime-check, if the analysis prevents it from being rolled
into its parent.

Workload Run-time overheads with
(MTSS) (Biswas et al.)

Automotive 3.90 3.90

Security 2.72 5.93

Telecomm 0.72 1.59

Network 2.20 7.21

Mediabench 2.79 2.81

Ptrdist 5.97 11.26

Average 3.05 5.45

Table III. Comparison of profile-independent and profile-dependent rolling checks optimization

26 · Bhuvan Middha et al.

Maximum Satisfiable Overflow (MSO) Maximum Satisfiable Overflow is
defined as the maximum amount of stack space that can be recovered for each task
expressed as a percentage of the maximum stack size observed across the available
input data sets for that task. Figure 9 shows the maximum satisfiable overflow
for each task in different workloads. In figure 9, each bar represents the MSO of
a particular task in the corresponding workload. The last bar in each workload is
the average across all tasks. The last workload, labelled average, plots the average
MSO per workload for all the workloads. The figure shows that on an average we
can recover 54% of stack space per task by reusing stack across tasks. In other
words, even if we underestimate the size of a task’s stack by 54% on an average,
the workload will still run to completion.

The numbers in Figure 9 are collected as follows. The workload is first executed
with the stack size for each task equal to its maximum observed requirement for the
input data set we use. Thereafter, to calculate the MSO amount for a particular
task T, we successively decrease the stack size allocated to T, keeping the stack size
for the other tasks unchanged. This activates our method since task T overflows.
We then observe if the workload still runs to completion without incurring an out-
of-memory fault. This is repeated several times with progressively lesser amount
of stack space allocated to T each time, until it no longer runs to completion.
The percentage difference between the original stack space allocated to T (with no
overflow) and the minimum stack space allocated to T at which the program still
runs to completion is the MSO for task T.

As seen from the figure, the space recovered is highly application dependent and
depends on both the stack usage of the task and the workload of which it is a part.
Furthermore, the space recovered also depends on the initial stack allocation of
each task, since more space in other tasks will allow more space to be recovered for
the overflowing task. We use a conservative safety factor of 1.1 in generating these
results; that is, each task is allocated a stack size equal to its maximum observed
stack size multiplied by the safety factor. If we increase the safety factor, the MSO
will increase. However, a higher safety factor is often not used in embedded systems
since their memory amount is limited due to cost constraints.

For some tasks in Figure 9, such as task 1 (blowfish) in the security workload,
the space recovered is 0%. This is because blowfish has a total stack requirement of
5632 Bytes, and it contains a procedure of size 4608 Bytes as its main procedure.
Procedure frames need to be allocated contiguously on a stack. Thus, if the stack
size of blowfish is underestimated by even 1 byte, it will require a contiguous space
of 4608 Bytes across other tasks to continue execution. No task in the security
workload contains 4608 bytes of free space contiguously. Therefore, no space can
be recovered for blowfish. This also points to the fact that all other tasks in the
security workload are using their stack deeply. Therefore, even though PGP and
SHA have large stack sizes of 65K and 10K respectively, the required 4608 bytes
cannot be allocated in either of them. On the other hand, for task 3, rijndael, in
the same workload, we can recover 100% of stack space. This indicates that even
if no stack is allocated to rijndael, the workload will still run to completion by
recovering space from the stacks of other tasks.

Effect of Page Size Figure 10 shows the effect of the page size on the MSO for the

MTSS: Multi Task Stack Sharing for Embedded Systems · 27

0.00

20.00

40.00

60.00

80.00

100.00

120.00

A
ut

om
ot

iv
e

S
ec

ur
ity

Tel
ec

om
m

N
et

w
or

k

O
ld
en

M
ed

ia
be

nc
h

P
trd

is
t

A
ve

ra
ge

M
a
x
im

u
m

 S
a
ti

s
fi

a
b

le
 O

v
e
rf

lo
w

 (
%

)
Task 1 Task 2 Task 3 Task 4 Average

Fig. 9. Maximum Satisfiable Overflow for dif-
ferent tasks in different workloads.

0

10

20

30

40

50

60

70

80

90

Dijkstra Patricia Treeadd TSP

M
a

x
im

u
m

 S
a

ti
s

fi
a

b
le

 O
v

e
rf

lo
w

 (
%

)

32B

64B

128B

256B

512B

1024B

Fig. 10. Effect of page size on MSO for the
network workload

network multi-tasking workload. The figure shows that as the page size increases,
the MSO of a task decreases in general. This is because smaller pages are better
able to utilize the remaining free space in a stack even if the space remaining is
small. We use a page size of 128 bytes since it offers reasonable space recovery
along with a low overhead.
Proportional Reduction Satisfiability (PRS) An alternate use of MTSS is to
decrease the physical memory required by an embedded system while maintaining
the same reliability. This is in contrast to its primary use discussed above as a
measure to increase reliability for the same amount of memory. When used to
reduce the amount of memory, each task is given less stack space than is needed by
the input data set. This causes overflow, which is then satisfied by MTSS.

To measure the amount of memory savings in this alternate use, we define the
Proportional Reduction Satisfiability (PRS) of a workload to be the percentage
by which its total stack space can be reduced (by an equal fraction across the
tasks) such that the workload still runs to completion with MTSS. To calculate
the PRS for a workload, we proportionally reduce the stack size of each task in
the workload, hence the name Proportional Reduction Satisfiability. This process is
repeated with successively greater reduction percentages until the workload incurs
an out-of-memory fault. The percentage difference between the original stack space
allocated to the workload (with no overflow) and the minimum proportional stack
space allocated to the workload at which the program still runs to completion is
the PRS for the workload.

Figure 11 plots the PRS numbers for different workloads. The difference in the
MSO and PRS numbers is that MSO numbers are calculated per task, while PRS
numbers are calculated per workload. The figure shows that on an average, across
all the multi-tasking workloads, we can recover 15.7% of the stack space needed,
reducing the memory cost of the system. The run-time at the PRS configuration
will be higher than that for the MSO configuration because more frequent overflows
will be incurred, but it is still upper-bounded by the worst-case real-time bounds
measured later in this section.
Comparison with non-contiguous stack allocation The Capriccio scheme [Behren
et al. 2003] described in Section 3 allocates the stack in fixed-size chunks from the
heap using a custom allocator and it uses run-time checks to detect stack-overflow
with a chunk. Table IV compares the run-time overheads of our scheme with Capric-

28 · Bhuvan Middha et al.

0

5

10

15

20

25

30

35

40

A
ut
om
ot
iv
e

S
ec
ur
ity

Te
le
co
m
m

N
et
w
or
k

O
ld
en

M
ed
ia
be
nc
h

P
trd
is
t

A
ve
ra
ge

P
ro

p
o

rt
io

n
a
l
R

e
d

u
c
ti

o
n

 S
a
ti

s
fi

a
b

il
it

y
 (

%
)

Fig. 11. Proportional Reduction Satisfiability for different workloads

cio4. The table shows that the average overhead from MTSS is 3.1% versus 10.7%
from Capriccio. Capriccio suffers from higher run-time overhead because of the
following reasons. First, it does not pre-reserve stack for any task in the workload.
Thus, there is no case in Capriccio in which stacks do not overflow. MTSS, on the
other hand, pre-reserves stack for each task (based on its observed stack size across
multiple data sets) and incurs the discontiguous growth overhead only upon over-
flow. Under normal operation, overflow in MTSS will be extremely rare. Second,
Capriccio links a new stack (worth an overhead of 27 instructions) whenever an
external or a library function is encountered, increasing its run-time overhead. In
our scheme, run-time checks are inserted in library functions also (and optimized
away using the rolling checks optimization). Thus, only the overhead of overflow
detection checks is incurred in MTSS for library function as well.

Capriccio also consumes more memory as compared to MTSS since it requires
huge stack chunks to be linked for pre-compiled library functions. The reason for
a large chunk is that in their desktop environment, library functions are used by a
variety of applications, some without stack sharing; thus they cannot have software
checks. Lacking overflow checks, a huge amount of space must be conservatively
given for the library function stacks to avoid overflow. In embedded systems, pre-
compiling the libraries with our compiler is feasible since the application set is
tightly controlled, and MTSS deployment for all applications is possible. In their
paper, a huge stack chunk of 2MB is linked every-time a library function is en-
countered. They conjecture that as long as threads do not block frequently within
library functions, they can reuse a small number of library stack chunks throughout
the application. Assuming that Capriccio links only one library stack chunk per
workload, Table IV shows the memory consumed by MTSS vs Capriccio. As shown
in the Table, Capriccio needs a total stack memory allocation of 2080KB which is
65 times more than that required by MTSS.

One can imagine a modified version of Capriccio which is targeted for embed-
ded systems as opposed to the original one, which is targeted towards desktop

4The implementation of the Capriccio scheme assumes an overhead of 6 instructions for the run-
time check, 20 instructions for unconditional stack-linking and 27 instructions for conditional
stack-linking. These overheads are reported in [Behren et al. 2003]. We use these overheads
since the paper does not mention the pseudo-code of the checks and therefore an equivalent
implementation on the ARM ISA is not possible. These overheads are likely to be higher for the
ARM ISA, which will further increase the run-time overhead of the Capriccio scheme.

MTSS: Multi Task Stack Sharing for Embedded Systems · 29

systems. The modified one would place a premium on memory and allow discon-
tiguous growth inside library functions by compiling the libraries with run-time
checks. When this is done, a huge stack chunk would no longer be needed for li-
brary functions, dramatically reducing their memory requirements to close to the
actual memory footprint of the libraries, as in our method. However, modifica-
tion to Capriccio is likely to significantly increase its run-time overhead because a
significant number of function calls are library calls. For example, for our set of
embedded workloads 53% of all dynamic function calls are to library functions on
average. Thus, the overhead of Capriccio will likely approximately double with this
modification, from its already high value of 10.7% in run-time. No formal compar-
ison with this scheme is presented because it is a speculative scheme that no one
has proposed.

Workload Run-time Stack Memory
Increase(%) from (Kilo-Bytes)
MTSS Capriccio MTSS Capriccio

Automotive 3.90 7.72 87 2135

Security 2.72 8.18 90 2138

Telecomm 0.72 7.38 6 2054

Network 2.20 14.52 7 2054

Mediabench 2.79 1.77 16 2064

Ptrdist 5.97 17.27 8 2056

Average 3.05 10.69 32 2080

Table IV. Comparison of run-time overheads of MTSS and Capriccio.

Real time bounds Unfortunately, we cannot measure the Worst Case Execution
Time (WCET) for MTSS. The WCET for any workload is defined as the worst
run-time across all datasets. However, it is not easy at design-time to construct
a dataset that initiates worst case behavior because of certain language features.
A recursive function, for example, can cause the application stack to overflow an
unbounded number of times, making it impossible to estimate WCET.

However, in order to get an estimate of the order of WCET we try to measure
the WCET for a particular dataset for each workload. This is not the true WCET,
but it is an attempt to characterize the order of WCET for MTSS. Figure 12 shows
the worst-case execution time (WCET) overhead for different workloads expressed
as a percentage of the run-time of the unmodified application. The average WCET
overhead (for fixed datasets) across all workloads in the system is 37.5%. The actual
run-time increase is usually much lower (it averages 3.1% in the common case of no
overflow). These WCETs were never actually observed by us; instead, they were
calculated using a combination of theoretical analysis and experiments.

The theoretical WCET overhead for each workload is calculated in three steps.
First, we calculate the minimum stack requirement of each benchmark in the work-
load. This is obtained by summing the stack frame sizes of a sequence of functions
starting from main that are certainly called independent of the input data set. This
guarantees that the benchmark would have surely been allocated at least that much
space, regardless of which input data sets are used in testing. Second, we simulate
an experiment in which every task is given its above-computed lower-bound stack
space, thus ensuring that every page that can overflow will overflow. The overflow

30 · Bhuvan Middha et al.

pages are grown in an artificial task with unbounded amount of memory. This en-
sures that the application runs to completion, allowing us to measure the run-time
of the application in the presence of overflows. Third, we modify our algorithm so
that it runs through its worst case at each page overflow encountered. To imple-
ment this, all the tasks are checked for the presence of free space (even if a task with
free space has already been discovered) before discontiguously growing the stack.
Further, for each task, all its pages are checked for the presence of holes. In this
way, this artificial simulation truly yields the theoretically worst-case number of
overflows, each incurring the theoretically worst possible overhead upon overflow.

As is, the WCET overhead of MTSS is low enough to warrant the use of our
scheme in preemptive real time systems. In particular it is much lower than the
worst-case run-time of hardware virtual memory which our scheme seeks to replace,
which has very poor real-time guarantees because of the possibility of TLB misses.
Indeed, the use of virtual memory in safety-critical real time systems has been
avoided precisely because of this reason [Bennett and Audsley 2001].

However, if the real-time bound for a particular application is found to be too
high with MTSS in a hard-real-time system, MTSS should not be used. Soft real-
time systems can use MTSS without problems since the average case overhead is
much lower.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

A
ut
om
ot
iv
e

S
ec
ur
ity

Te
le
co
m
m

N
et
w
or
k

O
ld
en

M
ed
ia
be
nc
h

P
trd
is
t

A
ve
ra
ge

W
C

E
T

 O
v

e
rh

e
a

d
 (

%
)

Fig. 12. Worst case run-time overhead for
different workloads

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

32 64 128 256 512 1024

Page Size (Bytes)

W
C

E
T

 O
v
e
rh

e
a
d

 (
%

)

Fig. 13. Variation of page size on real-time
guarantees

If the real-time bound with our default page size of 128 bytes is found to be
too high in hard real-time system, a higher page size can be used to reduce the
real-time bound. Figure 13 shows the variation of page size on real time guarantees
for the network multi-tasking workload. As the figure shows, an increase in page
size reduces the worst case run-time overhead and offers better real-time guarantees.
This is because a large page size reduces the chances of page overflow, and therefore,
does not incur the overhead of page allocation frequently. However, large page sizes
recover less space as shown in figure 10. This is a tradeoff and an appropriate page
size should be chosen based on the workload(s) that will be frequently executed by
the embedded system.
Additional Statistics We also measure the frequency of holes on our scheme.
Among the multi-tasking workloads we used, only a few holes are generated in the
overflow space. On an average the number of dynamic page allocations that lead to

MTSS: Multi Task Stack Sharing for Embedded Systems · 31

the generation of a hole when that page is freed is less than 5% of the total pages
allocated to a particular task after it overflows.

Some of the workloads, for example, the telecomm multi-tasking workload, did
not generate any holes in the overflow space. To understand why, consider that holes
are generated only when multiple tasks overflow in the same task. The telecomm
workload always had multiple tasks overflowing in different overflow spaces, never
generating holes. These results indicate that a hole compaction scheme will not
yield significant benefits for our scheme.

An experiment is also performed to calculate the average number of pages in
multiple-page allocations. This number depends on the frame sizes of the over-
flowing procedures and the page size used. With 128-byte pages, we observed that
the maximum number of pages allocated at one time for a single overflowing stack
frame is just four in the network multi-tasking workload; the median is 1, and the
average across all stack frames is 1.25.

11. CONCLUSION

This work presents a method for reusing stack across tasks in multi-tasking em-
bedded systems without hardware virtual memory support. The main objective of
the method is to improve the reliability of such systems in the presence of out-of-
memory errors. This is achieved by sharing stack across multiple tasks, in case of
stack overflow, through the use of an innovative paging system. Results indicate
that the overheads of our scheme in the common case of no overflow are low: the
run-time and energy use overheads are 3.1% and 3.2%, respectively, on average.
Our scheme is able to recover 54% space on an average for the overflowing task in
the multi-tasking workload. Alternately, when MTSS is used to reduce the amount
of physical memory in the system instead of increasing reliability, it is able to reduce
the stack space required by 16% on average for our workloads. Our scheme provides
good real time guarantees, and therefore, can be used for real-time systems.

The future work would explore if MTSS can profit from having a few fixed page
sizes instead of a single size at a time. The future work would also quantify the
effect of different types of task scheduling on MTSS. Finally future work will look
at how systems with virtual memory can take advantage of MTSS, in situations
where multiple threads are running in the same virtual address space.

REFERENCES

Appel, A. W. 1987. Garbage collection can be faster than stack allocation. Information Pro-
cessing Letters 25, 4, 275–279.

Appel, A. W. and Ginsburg, M. 1998. Modern Compiler Implementation in C. Cambridge
University Press.

ARM 2003. ARM7TDMI Technical Reference Manual , Fourth ed. Document No. ARM
DDI0210B.

Avi Silberschatz, Peter Baer Galvin, G. G. Operating Systems Concepts, Seventh Edition,
Seventh ed. John Wiley & Sons Inc.

Baker, T. 1990. A stack-based resource allocation policy for realtime processes. In Proceedings
of the Real-Time Systems Symposium. 191–200.

Behren, R. V., Condit, J., Zhou, F., Necula, G. C., and Brewer, E. 2003. Capriccio: Scalable
threads for internet services. In Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles. ACM Press, 268–281.

32 · Bhuvan Middha et al.

Bennett, M. and Audsley, N. 2001. Predictable and efficient virtual addressing for safety-

critical real-time systems. In Proceedings of the 13th Euromicro Conference on Real-Time
Systems, Delft, The Netherlands. IEEE Computer Society, 183 – 190.

Biswas, S., Simpson, M., Carley, T., Middha, B., and Barua, R. 2006. Memory Overflow
Protection for Embedded Systems using Run-time Checks, Reuse and Compression. ACM
Transactions in Embedded Computing Systems To Appear.

Bobrow, D. and Wegbreit, B. 1973. A model and stack implementation of multiple environ-
ments. In Communications of the ACM. 591–603.

Brylow, D., Damgaard, N., and Palsberg, J. 2000. Stack-size estimation for interrupt-driven
microcontrollers. Tech. rep., Purdue University. June.

Brylow, D., Damgaard, N., and Palsberg, J. 2001. Static checking of interrupt-driven software.
In Proceedings of the 23rd international conference on software engineering. 47–56.

Carbone, J. 2004. Efficient memory protection for embedded systems. RTC Magazine.

Dionne, D. J. 1998. uClinux – Embedded Linux Microcontroller Project.

Durrant, M. 2000. Running linux on low cost, low power mmu-less processors.
http://www.linuxdevices.com/articles/AT6245686197.html.

GCC. The GCC Compiler. http://gcc.gnu.org/ .

GDB. GDB: The GNU Project Debugger. http://www.gnu.org/software/gdb/gdb.html .

Grunwald, D. and Neves, R. 1996. Whole-program optimization for time and space efficient
threads. In Proceedings of the Seventh Intl. Conference on Architectural Support for Program-
ming Languages and Operating Systems. ACM Press, 50–59.

Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge, T., and Brown, R. B.

2001. Mibench: A free, commercially representative embedded benchmark suite. In Proceedings
of the IEEE 4th Annual Workshop on Workload Characterization.

Hauck, E. and Dent, B. 1968. Burroughs b 6500/b 7500 stack mechanism. In Proceedings of
AFIPS, SJCC, vol 32. 245–251.

Hennessy, J. and Patterson, D. 2002. Computer Architecture: A Quantitative Approach, Third
ed. Morgan Kaufmann, Palo Alto, CA.

Hertz, M. and Berger, E. D. 2005. Quantifying the performance of garbage collection vs.
explicit memory management. SIGPLAN Not. 40, 10, 313–326.

Hogen, G. and Loogen, R. 1993. A new stack technique for the management of run-
time structures in distributed implementations. Tech. rep., RWTH Aachen, Germany.
http://citeseer.ist.psu.edu/hogen93new.html.

Jagger, D. and Seal, D. 2000. ARM Architecture Reference Manual. Addison Wesley.

Kleidermacher, D. and Griglock, M. 2001. Safety-Critical Operating Systems. Em-
bedded Systems Programming 14, 10 (September). http://www.embedded.com/story/-
OEG20010829S0055.

Lamie, B. 2000. A multitasking revolution.

Middha, B. 2006. MTSS: Multi Task Stack Sharing for Embedded Systems. M.S. thesis, Univer-
sity of Maryland, College Park, MD.

Montanaro, J. et al. 1996. A 160MHz, 32b, 0.5W CMOS RISC microprocessor. IEEE Journal
of Solid State Circuit 31, 11, 1703–1714.

Moore, R. 2001. Unbound stacks and stoppable tasks. http://www.programmersheaven.com/
articles/smx/article3.htm.

Panda, P. R., Catthoor, F., Dutt, N. D., Danckaert, K., Brockmeyer, E., Kulkarni, C.,
Vandercappelle, A., and Kjeldsberg, P. G. 2001. Data and memory optimization techniques
for embedded systems. ACM Transactions on Design Automation Electronic Systems 6, 2,
149–206.

Pizka, M. 1999. Thread segment stacks. In In Proceedings of International Conference on
Parallel and Distributed Processing Techniques and Applications.

Regehr, J., Reid, A., and Webb, K. 2003. Eliminating stack overflow by abstract interpretation.
In Proceedings of the 3rd International Conference on Embedded Software. Springer-Verlag,
306–322.

MTSS: Multi Task Stack Sharing for Embedded Systems · 33

Shantanu Sardesai, D. M. and Dasgupta, P. 1998. Distributed cactus stacks: Runtime stack-

sharing support for distributed parallel programs. In Proceedings of the International Confer-
ence on Parallel and Distributed Processing Techniques and Applications.

Sinha, A. and Chandrakasan, A. P. 2001. In JouleTrack: a web based tool for software energy
profiling. 220–225.

Tiwari, V., Malik, S., and Wolfe, A. 1994. Power analysis of embedded software: A first step
towards software power minimization. In IEEE Transactions on Very Large Scale Integration
(VLSI) Systems. 437–445.

Wang, Y. and Saksena, M. 1999. Scheduling fixed priority tasks using preemption threshold.
In Proceedings of the Sixth International Conference on Real Time Computer Systems and
Applications.

Witchel, E., Cates, J., and Asanović;, K. 2002. Mondrian memory protection. In Proceedings
of the 10th International Conference on Architectural Support for Programming Languages and
Operating Systems. ACM Press, 304–316.

Wong, K.-F. and Dageville, B. 1994. Supporting thousands of threads using a hybrid stack
sharing scheme. In Proceedings of the ACM Symposium on Applied Computing. ACM Press,
493–498.

