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An Out-of-Order RISC-16

Tomasulo + Reorder Buffer = Interruptible Out-of-Order

ENEE 446: Digital Computer Design, Fall 2000
Prof. Bruce Jacob, http://www.ece.umd.edu/~blj/

This paper describes an out-of-order implementation of the 16-bit Ridiculously Simple Computer
(RISC-16), a teaching ISA that is based on the Little Computer (LC-896) developed by Peter Chen
at the University of Michigan.

1. RISC-16 Instruction Set

The RiSC-16 is an 8-register, 16-bit computer. All addresses are shortword-addresses (i.e. address
0 corresponds to the first two bytes of main memory, address 1 corresponds to the second two
bytes of main memory, etc.). Like the MIPS instruction-set architecture, by hardware convention,
register O will always contain the value 0. The machine enforces this: reads to register 0 always
return O, irrespective of what has been written there. The RiSC-16 is very simple, but it is general
enough to solve complex problems. There are three machine-code instruction formats and a total
of 8 instructions. The instruction-set is given in the following table.

Assembly-Code Format Meaning
add regA, regB, regC R[regA] <- R[regB] + R[regC]
addi  regA, regB, immed R[regA] <- R[regB] + immed
nand regA, regB, regC R[regA] <- ~(R[regB] & R[regC])
lui regA, immed R[regA] <- immed & OxffcO
sw regA, regB, immed R[regA] -> Mem[ R[regB] + immed ]
Iw regA, regB, immed R[regA] <- Mem[ R[regB] + immed ]

if (R[regA] == R[regB] ) {
. PC <- PC+ 1 +immed
beq  regA, regB, immed (if label, PC <- label)
}

PC <- R[regB], R[regA] <- PC + 1

jalr regA, regB

PSEUDO-INSTRUCTIONS:

nop do nothing
halt stop machine & print state
Mli regA, immed R[regA] <- R[regA] + (immed & 0x3f)

movi regA, immed

R[regA] <- immed

fill immed

initialized data with value immed

.space immed

zero-filled data array of size immed

The instruction-set is described in more detail (including machine-code formakbgiRiSC-16
Instruction-Set ArchitectureSystem calls are described only briefly in the present document; they
are special instances of the JALR instruction in which the immediate value is non-zero (and indi-
cates the system-call ID). This addition to the instruction-set architecture is made to support inter-
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rupts and interrupt-handling. System calls, interrupts/exceptions, and the handling of interrupts
and exceptions are described in more detail in the docURIBGE16 System Architecture

2. Background

To begin with, a little background on today’s out-of-order designs: in particular, there are three
important papers that helped shape contemporary out-of-order computing:

R. M. Tomasulo. “An efficient algorithm for exploiting multiple arithmetic unité8BM Journal of
Research and Developmefi (1):25-33. January 1967.

J. E. Smith and A. R. Pleszkun. “Implementation of precise interrupts in pipelined processors.” In
Proc. 12th Annual International Symposium on Computer Architecture (ISCA{1236—44. June
1985.

G. S. Sohi and S. Vajapeyam. “Instruction issue logic for high-performance, interruptable pipelined
processors.” IProc. 14th Annual International Symposium on Computer Architecture (ISCA-14)
pp. 27-34. June 1987.

The first paper gives a concrete hardware architecture for resolving inter-instruction dependencies
through the register file, thereby allowing out-of-order issue to the functional units; the second
paper describes several mechanisms for handling precise interrupts in pipelines with in-order
issue but out-of-order completion, the reorder buffer being one of these mechanisms; finally, the
third paper combines the previous two concepts into a mechanism that supports both out-of-order
instruction issue and precise interrupts (as well as branch misspeculations). The following
sections go into a little more detail on each.

Tomasulo’s Algorithm

Tomasulo called his mechanism the Common Data Bus. Because the mechanism is more
expansive than a simple bus, it is usually referred toTesasulo’s algorithminstead. The
underlying principle is thiswhen the data is stale, keep track of where new data will be coming
from. Here is how the principle is used. The register file holds data. For brief windows in time,
data words in the register file are stale, in that they are soon to be overwritten by an instruction
that has not yet completed. Take, for example, the following code:

Iw rl, 16(r2)

addi r1,r1, 1
Ignoring dependences between the instructions, the load instruction would be likely to take longer
than the add-immediate, because the load performs both an add-immediate and a memory-access:
it requires an add-immediate of register 2 with the value 16 to generate the load address. Only
after the address is generated can the memory access begin. Therefore, by the timatdhishe
ready to read the value aflL out of the register file, it is likely that the load is still in mid-
execution. If this is the case, theh contains stale data that cannot be used for computation by the
addi or any other instruction that follows the load.

Previous architectures would either stall in this instance or use forwarding paths in the pipeline.
Tomasulo’s algorithm uses a different mechanism: instead of keeping track of the datatin
keeps track of the data’s source, i.e. the load instruction which will updaite the near future.
When the load is decoded, it is enqueued in a numbrexseetvation statiomwaiting executionrl

is tagged as invalid; and the register file holds the reservation station ID instehd obntents.
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Therefore, rather than keeping track of the data value, the register keeps track of where the new
data will come from. When thaddi instruction is decoded and enqueued, it reads the ID from the
register file and is placed in its own reservation station, knowing that one of its operands is invalid,
but also knowing the unique ID of the instruction that will produce the operand. That unique ID is
the ID of the reservation station holding the load instruction.

This information is used to forward operands from the functional units to the instructions awaiting
data in reservation stations. Whenever a a functional unit produces a result value (either an ALU
result or a load-word memory request), the functional unit producing the value broadcasts that
value as well as the corresponding instruction’s ID on the Common Data Bus. All instructions
sitting in reservation stations look to this bus and gate in the data whenever one of its operands is
invalid and the corresponding tag matches the ID of the data on the common data bus. As soon as
an instruction’s operands are all valid, the instruction is ready to execute, whether this is before or
after the instructions that come before it in the instruction stream. The register file also monitors
this bus, and if the ID on the bus matches the ID in any invalid register, the data is gated in to that
register, and the register is marked as valid.

The architecture is very simple but extremely powerful and capable of resolving all dependencies
through the register file. It also provides a form of register renaming that allows the simultaneous
or out-of-order execution of multiple reads and writes to the same register. The algorithm (as well
as numerous variations on it) has become a staple in modern high-performance CPU design.

As an aside, the fixed-point pipeline in the IBM System/360 Model 91 supported out-of-order
completion as well, but in a slightly simpler form: all register data communication was through
the register file. The pipeline supported no forwarding paths. The mechanism is described briefly
in the same IBM Journal of R&D issue as Tomasulo’s algorithm, but the description is somewhat
incomplete. The documenBM 360/91's Out-of-Order Fixed-Point Pipen the class website
describes the issue and commit mechanism (at least, my interpretation of it) in more detail.

Reorder Buffer

The reorder buffer was developed to solve the problem that, in many pipelined computers—even
those with in-order instruction issue—execution results are frequently produced out-of-order. For
example, this happens when functional units have different latencies. This is what Smith and
Pleszkun mean by “pipelined” processors: in-order pipes with functional units that have different
latencies, the most common pipeline of the paper’s time. In previous machines, results were
typically written to the register file as soon as they were produced, and if the results were
produced out-of-order, they could therefore update machine state out-of-order. Such an
organization causes problems in the case of handling precise interrupts, during which the machine
state is required to reflect that of a sequential machine with in-order instruction completion (else
the interrupt is not considered “precise”). Smith and Pleszkun solve the problem by providing a
mechanism to allow instructions thgenerate resultout-of-order to becompletedin-order.
Changes to the state of the machine (register file, memory system) are limited to the time of
instruction completion, which is handled in program order, and therefore the state of the machine
always reflects that of a sequential implementation.

The fundamental idea is this decoupling of instruction execution and instruction completion.
Whereas in previous pipeline organizations execution and completion could be treated as an
atomic multi-cycle operation, the reorder buffer separates out the concept of instruction
completion as a phase of the instruction life cycle that may or may not happen on the cycle
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following the generation of results. Thus, the reorder buffer behaves like a holding tank for

instructions while they are in the process of being executed (including decode, operand fetch,
execution by an ALU, possible memory access, and writeback to the register file). It is easy to
envision many possible structures that would perform such a function.

The reorder buffer described in the paper is a circular queue, in which each entry holds all the
instruction state necessary to carry one instruction through the various phases of instruction
execution (operand fetch, execution, register file writeback, etc.). Instructions are placed into the
gueue and taken out of the queue in-order. The original implementation enqueues instructions at
the time of instruction issue—i.e. once all the operands are available. The paper describes two
variations: one in which the operands must be obtained though the register file and another in
which operands can be read directly out of the reorder buffer itself if the latest copy of a register
value is present in theesult portion of a reorder buffer entry holding an instruction that has
finished executing but has not yet written its result to the register file. Though instructions are
enqueued in program order and only when their operands are available, while they are in the
reorder buffer program order does not dictate the sequencing of any particular events: in
particular, the instructions might finish executing out of program order.

When an instruction is successfully dequeued from the reorder buffer, its resuttsnamaittedo

the machine state. At this point, the instruction is said togbeed. While an instruction is in the
process of execution, i.e. before retiring, it may cause an exceptional condition (invalid opcode,
TLB miss, segmentation violation, trap instruction, etc.). To ensure that such exceptions are not
handled speculatively or out-of-order, the handling of exceptional conditions is treated like the
updating of machine state: exception handling does not occur until instruction commit time. This
ensures that no previous instructions have caused as-yet-unhandled exceptions. Therefore, all
exceptions are handled in program order, and no exception is handled for an instruction that ends
up being discarded (as a result of a branch misprediction, for example).

As with Tomasulo’s algorithm, the concept is very simple but extremely powerful. Consequently,

it has appeared in nearly every high-performance architecture in the last half-decade. The paper
describes two mechanisms in addition to the reorder buffer that perform the same function in
slightly different ways: the future file and history buffer. Typically, these and other mechanisms
that perform the function of ensuring in-order commitment of machine state are all called by the
microprocessor design community “reorder buffers” whether the description is technically
accurate or not.

Register Update Unit

Note that Tomasulo’s algorithm mentions nothing about precise interrupts. In fact, because it
stipulates that results are to be sent to the register file as soon as they are produced, it cannot
support precise interrupts without modification. Note also that the original reorder buffer paper
mentions nothing about out-of-order issue to execution units. Though the mechanism may support
such behavior, it is not addressed in the paper.

Why am | mentioning any of this? Though these two mechanisms (Tomasulo’s algorithm and the
reorder buffer) solve very important problems, their existence pointed out a gaping hole that
would be very important were it filled: the lack of a mechanism that combines both out-of-order
issue and precise interrupts, which would provide supercomputer performance to general-purpose
computers using modern operating systems facilities.
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Out-of-order instruction issue is important because it allows instructions to begin executing as
soon as they are ready, thereby freeing up the functional units as early as possible. Otherwise,
artificial stall cycles are introduced into the pipeline, lengthening program execution. Tomasulo’s
algorithm provided a template for building a high performance machine with out-of-order issue
andimpreciseinterrupts. However, support f@reciseinterrupts became increasingly important
roughly in step with the rising importance of operating systems offering multitasking and virtual
memory—nhardware support for precise interrupts greatly simplifies the implementation of both of
these facilities (indeed, it is rather difficult to imagine an implementation of either multitasking or
virtual memorywithouta precise-interrupt facility). When the reorder buffer was introduced, out-
of-order instruction issue was typically found only in high-end scientific-computing machines;
out-of-order completion was the problem more commonly encountered in general-purpose
machines. However, the problem remained to implement out-of-order instruction issue in general-
purpose machines that also needed precise interrupts.

A few years after the reorder buffer paper appeared, and twenty years after Tomasulo’s algorithm
appeared, the problem was solved. Sohi and Vajapeyam describe in their paper the marriage of
Tomasulo’s algorithm and the reorder buffer; they call their mechanismetiister update unit

(RUU). This mechanism provides both out-of-order issue to functional units and support for
precise interrupts.

The RUU is a very intuitive merger of Tomasulo’s algorithm and the reorder buffer. It is a circular
gueue into which instructions are enqueued in-order and out of which instructions are dequeued
in-order. Meanwhile, instruction operands are gathered according to Tomasulo’s algorithm, and
instructions are sent to functional units as soon as all their operands are valid. The mechanism as
described in the paper only supports single-instruction enqueue/issue/commit; however, this is not
inherent to its design—it is easily extended to wider implementations.

The primary place of deviation with reorder buffer operation is at instruction enqueue: first and
foremost, an instruction is enqueued as soon as an RUU slot is available, whether the instruction’s
operands are available or not. Also, whereas in the reorder buffer scheme an instruction can read
its operands out of the reorder buffer if available and out of the register file otherwise, in the RUU
scheme an instruction never reads from other RUU entries directly. Rather, operands are gathered
from the functional-unit result buses as in Tomasulo’s algorithm, and they are also gathered from
the commit bus, which carries the result of the currently committing instruction to the register file.
Therefore, if at the time of instruction-enqueue the most recent version of one of its operands is
found in the result field of another instruction’s RUU entry, the operand does not become
immediately available to the instruction as it would in the reorder buffer scheme, but it does
become available as soon as the value is committed to the register file.

3. RISC-16 Out-of-Order Implementation: Overview

The RiSC-16 out-of-order design is very much like Sohi & Vajapeyam’s register update unit,
except that it is twice as wide. The instruction encode/issue/commit logic is Tomasulo’s algorithm
extended to handle dual-enqueue, dual-commit, and three-way issue to the execute units (two
ALU, one memory). The mechanism handles branch mispredictions and interrupts by placing
instructions not in a disjoint set of reservation stations but rather in a circular instruction queue
that functions similarly to Smith & Pleszkun’s reorder buffer. Like the register update unit, the
design departs from the reorder buffer in several ways. First, an instruction is enqueued as soon as
an instruction-queue slot is available, whether the instruction’s operands are available or not.
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Figure 1: Overview of the pipeline organization

Second, instruction operands are not read from the instruction queue at enqueue time if the
register file does not have the latest copy of a data word; rather, the instruction must wait until the
data is available on the commit buses, the ALU buses, or the memory bus.

Because the computer-architecture field cannot seem to agree on definitions for issue/dispatch, we
do not use the term “dispatch” and instead use the term “enqueue” to mean placing an instruction
into the instruction queue and the term “issue” to mean sending a ready instruction to one of the
functional units. This is illustrated in Figure 1. The architecture is two-way fetch, two-way
enqueue, three-way issue and execute (two ALU instructions and one memory instruction), and
two-way commit. Branch prediction is a simple backward-taken/forward-not-taken algorithm.
The instruction queue has eight entries and is integrated with the memory queue; therefore, the
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system effectively has eight miss-status holding registers (MSHRs), enabling the handling of up
to eight outstanding cache misses. However, this is artificially limited to three simultaneous

requests being handled, to better reflect current DRAM design: there are three entries in the
memory queue, which handles the memory interface and thus limits the number of simultaneous
requests.

The figure shows four of the phases through which all committed instructions pass: fetch,
enqueue, issue, and execute. Each of these takes one cycle. In this document, they are not called
“stages” because that term implies more rigid timing and ordering, whereas instructions in an out-
of-order core spend variable lengths of time in each stage and can visit some stages out of
program order. The following sections describe each of the phases in more detail.

Fetch Phase

During the fetch phase, exactly two instructions are read from the instruction memory and placed
into one of the two fetch buffers, each of which is wide enough to hold an instruction-fetch packet

of two 16-bit instructions, plus the associated PC values for the instructions fetched. If no fetch
buffer is available (e.g., if both of them are full or part full), then fetch stalls. Like the Alpha’s
fetch/enqueue mechanism, there are two buffers, each as wide as a fetch packet, and the enqueue
mechanism does not move on to the second fetch buffer until the first is completely drained.

Enqueue Phase

During the enqueue phase, up to two instructions are taken from one of the fetch buffers and
placed at the tail of the instruction queue. The slots are designated “tail0” and “tail1l” in the queue.
If the first instruction in the buffer is a BEQ that is predicted taken (in this implementation, it is a
simple backward-taken/forward-not-taken algorithm), the second instruction is squashed. If there
are instructions in the other fetch buffer (the one that is currently not being considered for
enqueue), those instructions are squashed as well. If the second instruction in the fetch buffer is a
taken branch, only instructions in the alternate fetch buffer are squashed.

An example of two instructions being enqueued (the first of which is not a taken branch) is shown
in Figure 2. The register-file access looks very similar to the decode logic in the single-issue in-
order pipeline described iffhe Pipelined RiSC-18However, the contents of the instruction-
gueue entry differ slightly from the contents of the pipelined RiSC’s ID/EX register. The main
differences are the status bits intended to indicate where in the instruction life cycle this particular
instruction is. The fields of the instruction-queue entry are shown in Figure 3.

When an instruction in one of the fetch buffers is enqueued or squashed (by a predict-taken
branch), it is marked as invalid in the fetch buffer. Once both instructions are invalid, the enqueue
mechanism looks at the alternate fetch buffer.

Data-Incoming Phase

When an instruction is enqueued, it may or may not have all of its operands. If it does, it can be
sent immediately to the appropriate functional unit on the following cycle. Otherwise, it must wait
in the instruction queue for its operands. During this phase, instructions scan the various result
buses for their data. These buses include the ALUO/ALUL1 Buses which have values returning
from the ALUs, the Memory Bus which has load values returning from data memory, and the
Commit Bus which has the values that are currently being written to the register file. If an
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Figure 2: Example enqueue of two instructions

instruction sees that one or more of its operands is invalid arstdgteag matches th&D of the
data on one of these buses, it gates the associated data into its local operand storage.

Issue Phase

Once all of an instruction’s operands are valid, its operands, opcode, and ID are sent to the input-
registers of the appropriate functional unit. The instruction’s opcode directs it to the appropriate

bus: LW/SW instructions go to the memory queue; all other opcodes go to an ALU. The case

when more than two ALU instructions or more than one memory instruction are ready to issue at

the same time is covered in a later section on scheduling.

Memory operations are a special case of issue, because they actually issue twice: once to an ALU
to generate the target address, and then to the memory queue when the address is known.
Therefore, the issue logic considers an instruction ready to issue if all of its operands are valid, or
if it is a memory operation and its ARG1 operand is valid. In this instance, the instruction is
issued to an ALU as aaddi instruction, and its results are gated-in to the ARG1 operand upon
completion, thereby overwriting the previous valid contents. Upon completion ofadue
instruction, theA bit in the instruction-queue entry is set, indicating that there is no need to re-
issue the address-generation portion of the instruction. For load-word operations, the instruction
is ready to be issued to the data memory immediately. For store-word operations, the ARG2
operand must also be valid, as it contains the value to be stored. Also, as described below, a store
instruction must be issued at the time of commit.

Execute Phase

Issue and execute do not happen in the same cycle: it is a two-cycle process to obtain a result once
all of an instruction’s operands are valid. As described in the previous section, the instruction’s
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valid bit: signifies whether or not the entry’s contents are valid

done bit: signifies whether or not the instruction has completed execution

out bit: signifies whether or not the instruction has been sent to a functional unit
branch bit: signifies that the instruction was predicted taken

memory-issue bit: signifies that the instruction is ready to be sent to the data memory

> 2 W O U <

address bit: signifies that the instruction’s memory address has been generated (only
applies to LW/SW operations)

TYP the instruction’s “type” which indicates whether or not it touches memory, and whether
or not it can cause a change in control-flow ... note that, since this can be deduced from
the opcode, it is not strictly necessary

OP instruction opcode
TGT the instruction’s register target, or zero if the instruction has no target (BEQ, SW)

EXC the exception code, or zero if the instruction has caused no exception — note that
HALT instructions place an EXC_HALT value directly into this register

RESULT the register-file value that the instruction produces, if any
ARGO the instruction’s extended/shifted immediate value
ARG1 the instruction’s first register operand

ARG1_v valid bit for ARGL1: indicates whether the value in ARG1 is valid

ARG1_src source bit for ARG1: specifies the data-source for ARG1 (the location in the instruction
queue of the instruction that will produce the value)

ARG2 the instruction’s second register operand
ARG2_v valid bit for ARG2: indicates whether the value in ARG2 is valid

ARG2_src  source bit for ARG2: specifies the data-source for ARG2 (the location in the instruction
queue of the instruction that will produce the value)

PC the address of the instruction, to be used if the instruction causes an exception or a
branch-mispredict

Figure 3: Flelds of an instruction-queue entry

operands, opcode, and ID are moved to the ALU'’s input registers during the issue phase. On the
following cycle the instruction is executed, and the resulting values are sent out on the various
result buses to be latched at the end of the cycle. Memory operations take longer than a single
cycle, so load results appear on the memory bus several cycles after they are initiated (this is an
arbitrary choice — it is not inherent to the architecture).

In the instruction-queue entries, results are gated into the various operand registers as described
above, but they are also gated into the RESULT registers of those instructions whose IDs are on
the result buses. When this happens, the instruction is marked “done.” The exception to this rule is
the ALU result for the effective-address generation component of a memory operation: when this
result appears on the bus, the instruction is not yet done.

Commit Phase

When an instruction has completed, it gates the contents of one of the various result buses into its
RESULT register and sets tlimne bit. This signifies that the instruction is ready to commit its
result to the “permanent” machine state: the register file and/or data memory.

As described in the section above on reorder buffers, this mechanism protects the machine from
instructions that would be squashed because of exceptions or mispredicted branches: if an
instruction commits its result to the register file and is later found to have immediately followed

an instruction that causes an exception or a branch instruction that was mispredicted, it is very
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difficult to un-do the register-file update. It is even more difficult to un-do changes to main
memory. Therefore, changes of this nature to the “permanent” machine state (as opposed to the
contents of the instruction queue) are only allowed to occur once it is known that the instruction is
non-speculative and definitely causes no exceptions.

On every cycle, the commit logic considers the top two instructions in the instruction queue: those

at the head of the queue, labeled “head0” and “headl.” If there is a mispredicted branch in the

machine, commit does not proceed, unless the mispredicted branch is in the head1l slot or later. If
headO is ready to commit, it does so. If head0O and headl are both ready to commit, both do so.
Otherwise, nothing happens.

When an instruction commits, its result is sent to the register file and made available to other
instructions needing operands. If the instruction is a SW, it is sent to the memory system.

If an instruction that would otherwise be allowed to commit causes an exception, indicated by a
non-zero value in th&XC field of its instruction-queue entry, the machine reacts just like a
branch-mispredict event: the program counter is redirected; the exceptional instruction’s program
counter, held in the instruction-queue entry, is saved in a hardware register; the pipeline is flushed
from the exceptional instruction to just before tailO; and execution begins with the first instruction
in the exception handler. Exception-handling is covered in more detail later.

4. Mechanisms that Require a Little More Detall

The previous section gives a high-level overview of what is going on in the pipeline, but there are
a few details that are left out for brevity and clarity. This section delves into some of these details.

Instruction Scheduling

Instruction scheduling is the process of assigning ready instructions to functional units. In this
implementation, all non-memory functional units (i.e., ALUS) are identical, which simplifies
things immensely. However, there are only two ALUs, and on any given cycle it is possible for
more than two instructions to be ready for execution. This is where instruction-scheduling comes
in. It is the logic that prioritizes instructions. Traditionally, instructions are prioritized by age: the
oldest instructions in the pipeline should execute before newer instructions because older
instructions are more likely to be holding up other instructions in the pipe, either through
dependencies or just by the fact that some instructions are ready to commit but cannot until an
older instruction finishes execution.

Figure 4 gives a stylized logic diagram of the instruction-scheduling mechanism. The boxes
represent instruction-queue entries, and shaded boxes indicate the presence of valid instructions.
Instruction-queue entries put out two signagsueandislot. The 1-bitissuesignal signifies that

the instruction is ready to issue. The signal is high if the instruction-queue entry contains a valid
instruction, the instruction is not done executing, the instruction is not currently “out” (in the
process of being executed), and its operands are both valid. Theskbgignal is the ID of the

ALU for which the instruction is destined, or an invalid ALU number if there are too many
instructions ready to issue. If an instruction is putting out a valid slot number and its issue signal is
high, then that instruction is sent to the input-registers of the indicated ALU. Note that the scheme
requires logic equivalent to saturating adders—otherwise, if there are enough instructions ready to
issue, successive adds could yield a valid ALU ID for a low-priority instruction, even after an
invalid ALU number has been produced.
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LOGIC:

ISSUE, = IQy.v & ~IQy.d & ~1Q.0 & I1Q,.argl_v & IQ.arg2_v
ISLOT, = SATURATING-ADD( ISSUE, 4, ISLOT, )

| Qs

| IQs

| Q7

Figure 4: Instruction scheduling logic

Note that the critical path scales asnPfor n entries in the instruction queue. This is clearly a
problem, as instruction windows are increasing in size—we are currently at the several-dozen
mark and pushing rapidly toward the several-hundred mark. A recent ISCA paper by Henry, et al.
looked at ways to reduce this to O(lla)g which is obviously much better.

An optimization: because the issue/execute process is a two-cycle operation from the moment an
instruction’s operands become valid, a chaimafependent instructions would takae @ycles to
execute. This is not particularly efficient. An improvement is to allow data on the ALU result
buses to be latched back into the ALU input-registers directly. To accomplish this, an instruction
must recognize when a value will be available on an ALU bus on the following cycle and set its
issuesignal high when it sees that the ID of an instruction currently in the execute phase is the
same as one of its operasid values.

Memory Operations

The decision to allow an instruction to proceed to the memory subsystem is very similar to
instruction scheduling. The difference is that only three memory requests can be in transit at once.
This corresponds roughly to the design of today’s DRAM architectures (e.g. Direct Rambus) that
allow pipelined requests to memory but can handle a maximum of three requests in the pipe
simultaneously. Thus, while the instruction-scheduling mechanism need only ensure that the
instruction issue-width (two) is never exceeded, the memory-scheduling mechanism must ensure
that the memory issue-width (one) is never exceeded and must also ensure that the maximum
degree of concurrency (three) is never exceeded.

In this implementation, the memory-scheduling is done in two cycles: in the first cycle, once the
instruction’s operands are ready, the instruction’s address is compared to those of all preceding
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memory instructions. If there are no address conflicts with preceding instructions, and if no
preceding instructions are ready to issue to the memory queue, the instruction is marked as ready
to issue to the memory queue. The memory request is then sent to the 3-entry memory queue on
the following cycle.

An address conflict occurs whenever the reordering of two accesses might cause a problem, i.e.
when they access the same memory location and one of them is a store instruction. Loads are
allowed to bypass any store instruction whose target address is known to be different and are
allowed to bypass any loads whether the target address of the bypassed load instruction is known
or not. Loads are not allowed to bypass store instructions whose addresses are not yet known;
there is a chance that the store’s address might end up being the same. Stores are allowed to
bypass one another once their addresses are known to be different. Note that, while this memory
architecture works well in a uniprocessor setting, it can cause enormous problems in a
multiprocessor setting. Note also that many more aggressive implementations exist that allow
speculative bypassing and then, at a later point, repair any damage done if it is determined that an
address conflict occurred between bypassed memory operations.

Branch Mispredictions

Though branch mispredictions and precise interrupts require virtually identical support, there are
a few differences. Here is one of the most significant examples: when the pipeline is flushed
because of an exception, the entire instruction queue is flushed, whereas only a portion of the
instruction queue is flushed when a branch mispredict is detected.

Why is this important? It is not particularly difficult to delete only a subset of the instruction
gueue’s entries. The difficulty comes in maintaining the coherence of the register file: if all the
instructions in the instruction queue are flushed, the entire contents of the register file can
immediately be set tvalid because all the outstanding instructions have been cancelled. This
causes no inconsistencies because the register file is only updated on instruction commit, and
therefore its contents are always valid, up to and including the last committed instruction.

However, when a branch mispredict is detected, only a portion of the instructions in the queue are
flushed; therefore, the state of the register file is partially valid, partially invalid. The core must
determine very quickly which subset of the register file’s contents are valid, and, for each register
that remains invalid, the processor must determine the ID of the latest non-squashed instruction
that will update that register.

Take, for example, the following instruction-queue contents:

HEAD: iq3 addril, r2, r3
iq4 nand r3, r4, r5
ig5 nand r4, r5, r6
iq6 addri, r3,r4
iq7 beq r1, r0, foobar
iq0 add r1, r4, r5
TAIL: iql
Assume that théeq instruction was mispredicted; therefore upon detection of the misprediction
all following instructions are removed from the instruction queue. Thusatieinstruction in
instruction-queue slagO is deleted. At the point the misprediction is detected but before it is
resolved, the state of the register file indicates thais invalid and that its source is this very
instruction (theadd instruction inig0). Recovering from the mispredicted branch means that the

register file must retain thevalid status onl, but its source ID should becongb.
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This is non-trivial, but it amounts to solving the same problem as instruction scheduling, except
that older instructions are given a lower priority, not a higher priority. Sohi & Vajapeyam’s
solution was to use counters associated with each register; these counters indicated the number of
instructions in the RUU that targeted a given register, and they were used as the ID field instead of
using a reservation station number (or, as in the RiSC-16 implementation, the instruction queue
entry number). The solutions are functionally equivalent.

Precise Interrupt Handling

As mentioned in the introduction, the goal is to support precise interrupts and provide a simple
TLB-miss handling facility. The initial implementation does not provide such support, but this
section gives an overview of the proposed interrupt-handling facility.

At instruction-commit time, a check is made to see if an instruction causes an exception. This is a
simple check of the instructionBXC field; if this field is non-zero, the instruction caused an
exception. Once it is verified that the instruction will commit (i.e. once it is verified that none of
the instructions before it cause exceptions or unexpected changes in control flow), the exception
handler takes over. For backward compatibility with implementations that do not handle
interrupts, interrupt handling is disabled by default. If interrupt handling is enabled, the hardware
expects that there is @axception vector tablem memory at location 0x0000 holding sixteen jump
vectors: one for each interrupt type. The following interrupt types are the ones defined so far:

#define EXC_NONE 0
#define EXC_HALT 1
#define EXC_TLBMISS 2
#define EXC_SIGSEGV 3
#define EXC_INVALID 4

When an instruction causes an exception, that fact is recorded in its instruction-queue entry. At the
point when the instruction would normally commit, the exception number is used as an index into
the exception vector table to find a jump address. The pipeline is flushed and resumes execution at
that location — and, if supervisor mode is implemented, privileges (i.e. supervisor mode) must be
enabled. The program counter of the exceptional instruction is held in a hardware register to allow
a later return of control to that point, if desired.

When the exception or interrupt handler is finished, control returns to the application, assuming
that the exception is non-terminal, as in the case of most TLB misses. The mechanism provided
by most architectures is &turn-from-exceptioninstruction that jumps to the exceptional
instruction (or to the one after it, in the case o$ystem-calinstruction) and at the same time
returns the processor to user mode. The RiSC-16 does exactly this.

5. Pipeline Timing

As an instruction may spend a variable length of time in many of its phases, different instructions
can have different latencies. This is expected, as the architecture is not a rigid N-stage pipeline
like the MIPS/DLX. Moreover, differentlassef instructions will most certainly have different
latencies, because they require the use of different functional units that have different latencies,
and some instructions require the use of multiple functional units in series. This section describes
the timing behavior of the various instruction classes; the next section then illustrates the
movement of instructions and their related status information through the pipeline.

In the figures, dashed lines indicate phases that can take one or more cycles.
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ALU Instructions

ALU-type instructions &dd, addi, nand, lui) have the following timing:
g I I

LFETCH | [IQ ENTRY ]1[ OPERANDS]| EXECUTE |[HEADPTR]

INTO
FETCHBUF | ENQUEUE Scr‘iSE;tJJELE& LATCH COMMIT

RESULT RESULT

The words in square brackets represent potential reasons for stalling. In the enqueue phase
(second cycle), an instruction can wait arbitrarily long for an open instruction-queue entry, and,
once an entry is available (tagged as invalid), the enqueue process takes one cycle. In the issue
phase (third cycle), an instruction can wait arbitrarily long for its operands, and, once the
operands are valid, the issue process takes one cycle. In the commit phase (last cycle), an
instruction can wait arbitrarily long for the head pointer to come around, signifying that the
instruction is in the next block of instructions to commit, and, once the instruction is marked
“done” and all preceding instructions have committed, the commit process takes one cycle.

These are simple instructions, requiring a single cycle of execution in an ALU. They all update
the register file. They can have two register operaadsd,(nand), one register operandddi), or

no register operand&uf). As with any other type of instructions, more than one may be executed
and committed simultaneously if there are no inter-instruction dependencies. For example, the
following code:

add r1, r2, r3
nand r4, r5, ré

has the following timing, assuming the necessary operands are available in the register file at
instruction enqueue:

I-FETCH ScHEDULE | EXECUTE
AND

INTO ENQUEUE
FETCHBUF ISSUE

COMMIT
LATCH RESULT
RESULT

I-FETCH ScHEDULE | EXECUTE
AND

INTO ENQUEUE
FETCHBUF ISSUE

COMMIT
LATCH RESULT
RESULT

Because of the optimization described earlier, a chain of dependent instructions is executed by the
processor core at a rate of one instruction per cycle. For example, the following chain:

lui r1, Oxabcd

i rl, Oxabcd

add rl, rl, r2
nand rl, r1, r3

has the following timing:

I-FETCH ScHEDULE | EXECUTE

INTO ENQUEUE AND
FETCHBUF ISSUE

COMMIT
LATCH RESULT
RESULT

I-FETCH SCHEDULE | EXECUTE

ENQUEUE | [OPERAND | AND

INTO COMMIT
FETCHBUF ISSUE

LATCH RESULT
RESULT

I-FETCH ScHEDULE | EXECUTE
AND

INTO ENQUEUE | [OPERAND ]
FETCHBUF ISSUE

COMMIT
LATCH RESULT
RESULT

I-FETCH SCHEDULE | EXECUTE
AND

INTO ENQUEUE [OPERAND |
FETCHBUF ISSUE

COMMIT
LATCH RESULT
RESULT
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Note that the latency is increasing for each successive instruction. Clearly, this pattern is not
sustainable. At some point, in a long line of dependent instructions, the instruction queue fills up,
restricting the enqueue mechanism to one instruction per cycle, and the steady-state yields a
single-instruction throughput.

For example, the following code:

addi rl1,rl1, 1
add rl, rl, r2
nand rl, rl, r3
addi  r1,r1,1
add rl, rl, r2
nand rl, r1, r3
addi rl1,rl1, 1
add rl, rl, r2
nand rl, rl, r3

yields the following timing:

I-FETCH SCHEDULE | EXECUTE
T AND COMMIT
LATCH RESULT

RESULT

INTO [IQENTRY] | ENQUEUE
FETCHBUF ISSUE

I-FETCH SCHEDULE | EXECUTE
AND

INTO [IQENTRY ] ENQUEUE
FETCHBUF ISSUE

COMMIT
LATCH RESULT
RESULT

I-FETCH SCHEDULE | EXECUTE

INTO [IQENTRY] | ENQUEUE AND
FETCHBUF ISSUE

COMMIT
LATCH RESULT
RESULT

I-FETCH ScHEDULE | EXECUTE

INTO [IQ ENTRY] ENQUEUE AND
FETCHBUF ISSUE

COMMIT
LATCH RESULT
RESULT

I-FETCH scHepuLe | EXECUTE

[IQENTRY] | ENQUEUE AND

INTO COMMIT
FETCHBUF ISSUE

LATCH RESULT
RESULT

I-FETCH ScHEDULE | EXECUTE
NT AND. COMMIT
LATCH RESULT

RESULT

INTO [IQENTRY] ENQUEUE
FETCHBUF ISSUE

The reason that every instruction stalls waiting for an 1Q entry is that the alternate fetch buffer is
filled as soon as it is emptied—e.g., as soon as the second instruction is enqueued, the third fetch
(getting the 5th and 6th instructions) begins.

Memory Instructions

Load instructions have the following timing:

LATCH [HEAD PTR]

- - [IDLE]

RESULT commIT
RESULT
OPERANDS ] EXECUTE CHECK FOR SETDBIT RETIRE
LATCH ADDR | “,prnccd SEND o
SCHEDULE& | IN ARG1 TO MEMQ
|SSUE CONFLICTS
SETABIT

LFETCH | [IQENTRY] |l
INTO

I
FETCHBUF | ENQUEUE

MEMORY
READ

- = WAIT 1 WAIT 2

After the target address is generated, the memory-scheduling logic compares the target address to
that of every instruction earlier in the queue. This phase (“check for address conflicts”) can take
an arbitrary amount of time until the instruction queue is free of conflicts. When conflicts have
been resolved, the request is sent to the memory queue, illustrated by a separation of the two
instruction paths. The memory system returns the requested data three cycles later, to be latched
on the fourth cycle. When the data returns,dbiee bit is set and the instruction can commit.
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Store instructions have slightly different timing:

RETIRE
R - - - - | serosr e
EXECUTE
FFETCH | [IQENTRy ] [[OPERANDST) = | CHECK FOR | [HEADPTR]
INTO ADDRESS
FETCHBUF | EnQuEUe |SCEDULE&| INARCGL 1 conpycrs | | SEND
SETABIT Q
MEMORY
- - - - - - - - 4 wam WAIT 2 vl

The primary difference is that stores wait to send anything to the memory system until it is known
that they will definitely commit. Therefore, the wait for the head pointer to come around happens
earlier in the life cycle. Once the request has been handed off to the memory queue, there is no
reason for the instruction to remain in the instruction queue, and so it is committed immediately.

Here are the timings for several different combinations of memory instructions. First, two
independent memory operations fetched at the same time, whose operands are available in the
register file at enqueue time. This shows the stall cycle introduced to the second instruction that is
due to the maximum issue width of memory operations (one per cycle). For example, the
following code:

Iw rl, r0, fool
Iw r2, r0, foo2

has the following timing, with the shaded boxes indicating the cycles during which the instruction
is occupying a slot in the memory queue:

EXECUTE
LATCH COMMIT
I-FETCH SCHEDULE CHECK FOR
INTO ENQUEUE AND. LATCHADDR |~ sor oo SEND L TR MEMORY RESULT RESULT
IN ARG TO MEMQ READ
FETCHBUF ISSUE CONFLICTS SETDBIT RETIRE
SETABIT
EXECUTE
LATCH COMMIT
I-FETCH SCHEDULE CHECK FOR
INTO ENQUEUE AND LARC:R?PR ADDRESS CONFLICTS, Tosa’éaq WAIT 1 WAIT 2 Mgggg‘( RESULT RESULT
FETCHBUF ISSUE AVAILABLE ISSUE SLOT SETDBIT RETIRE
SETABIT

Next, we look at a series of independent instructions that exceeds the memory queue’s capacity.
Here, memory instructions stall not because of exceeding the memory-issue width (one) but of
exceeding the memory queue’s capacity of simultaneous instructions (three). The following code:

Iw rl, r0, fool
Iw r2, ro, foo2
Iw r3, r0, foo3
Iw r4, r0, foo4

has the following timing, the shaded boxes representing cycles during which instructions occupy
slots in the memory queue:

EXECUTE
LATCH COMMIT
I-FETCH SCHEDULE CHECK FOR
INTO ENQUEUE AND LAITCH ADDR | “ApDRESS SEND, WAIT 1 WAIT 2 MEMORY RESULT RESULT
N ARG1 TO MEMQ READ
FETCHBUF ISSUE CONFLICTS SETDBIT RETIRE
SETABIT
EXECUTE
LATCH COMMIT
I-FETCH SCHEDULE CHECK FOR
INTO ENQUEUE AND LA;\‘C:;SFR ADDRESS CONFLICTS, TOSS';%Q WAIT 1 WAIT 2 MEEAESY RESULT RESULT
FETCHBUF ISSUE AVAILABLE ISSUE SLOT SETDBIT RETIRE
SETABIT
EXECUTE
LATCH COMMIT
I-FETCH SCHEDULE CHECK FOR
INTO ENQUEUE AND LA‘T;:F;\;DR ADDRESS CONFLICTS, Tosag?m WAIT 1 WAIT 2 Mggggv RESULT RESULT
FETCHBUF ISSUE AVAILABLE ISSUE SLOT SETDBIT RETIRE
SETABIT
EXECUTE
LATCH COMMIT
I-FETCH SCHEDULE CHECK FOR
INTO ENQUEUE AND LAT’\‘C:RA;DR DDRESS CONFLICTS, TOSISIE\)AQ WAIT 1 WAIT 2 ME"E"ESV RESULT RESULT
FETCHBUF ISSUE AVAILABLE ISSUE SLOT, MEMQ CAPACITY
SETABIT SETDBIT RETIRE
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Next, we look at the timing for an instance where a store instruction depends on the data returned
from a load instruction. This shows the store stalling during the operand fetch phase. The
following code:

Iw r1, r0, fool
SwW rl, r0, foo2

has the following timing:

EXECUTE

LATCH COMMIT
I-FETCH SCHEDULE CHECK FOR
INTO ENQUEUE AND LALC:$510R ADDRESS Tosa;lr?no WAIT 1 WAIT 2 ME"E"SSV RESULT RESULT
FETCHBUF ISSUE CONFLICTS

SETABIT SETDBIT RETIRE

EXECUTE
I-FETCH SCHEDULE LATCH CHECK FOR
INTO ENQUEUE AND LA;;\‘C:RAGDFR [ WAIT FOR DATA OPERAND | DATA ADDRESS T()Sa\élh)AQ SET D BIT FTAE‘;!&E Mﬁ;ﬁ:\(
FETCHBUF ISSUE OPERAND | CONFLICTS
SETABIT

Last, we look at the timing for a pair of memory instructions where the first is a load-word and the
second uses the result of that load for its target address. The second instruction could be a load or
store instruction. This shows the second instruction stalling during the address-generation phase.
The following two code examples produce identical timing (the difference is that the second code
example shows th&w dependent on ther throughrl for both address and data):

Iw rl, r0, fool
S r0, rl, foo2
Iw rl, r0, fool
swW rl, rl, foo2

The timing is shown below:

EXECUTE
LATCH COMMIT
I-FETCH SCHEDULE CHECK FOR
INTO ENQUEUE AND LATCHADDR | “sppRESS SEND) WAIT 1 WAIT 2 REMORY RESULT RESULT
IN ARG1 TO MEMQ READ
FETCHBUF ISSUE CONFLICTS
SETABIT SETDBIT RETIRE

EXECUTE
I-FETCH LATCH SCHEDULE

INTO ENQUEUE [WAIT FOR ADDRESS OPERAND ] ADDR AND MLC:$SPR
FETCHBUF OPERAND ISSUE CONFLICTS
SETABIT

c:;g:Ezc;R SEND SEEET RETIRE MEMORY
TO MEMQ INSTR WRITE

Note that, compared to ALU instructions, there is an extra cycle between the moment that the
necessary operand is produced and the moment that the store instruction is issued to the ALU for
its address generation phase. This is the extra cycle between the “latch result” cycle of the load
instruction and the “execute” cycle of the store instruction after it—the cycle in which the store
instruction does “schedule and issue” operations. If the first instruction were an ALU-type
instruction and not a load-word, the store would schedule and issue during the cycle currently
marked “latch addr operand.” This is not a mistake; the optimization described earlier that allows
dependent ALU instructions to issue on successive cycles does not apply to operands appearing
on the memory bus. When an instruction obtains an operand from the memory bus, it does not
schedule itself until the following cycle.

Branches and Jumps

Conditional branches that are predicted not-taken look just like ALU-type instructions: they
collect their operands and are issued to the functional units to verify the prediction. Meanwhile,
the program counter simply increments as with a regular instruction. Assuming the prediction is
correct, pipeline timing is not affected.

Conditional branches that are predicted taken are resolved in the enqueue phase. Wigte the
instruction is sitting in one of the fetch buffers, the predicted target address is generated and
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placed into the program counter. Instruction fetch down the predicted path begins on the following
cycle. Thus, there is a one-cycle penalty for predicted-taken branches. This is pretty standard for
architectures without branch-target buffers. The timing:

RECOGNIZE FETCH

FFETCH  |gRANCHBACK

DOWN
INTO

PREDICTED
FETCHBUF | reseT pC PATH

For example, assume that the PC currently points tbafénstruction. The following code:

back: add r2, r3, r4
nand 15,12, r6
add rl, r2,r3
addi r1,r1,5

Béq r0, rl, back // PC starts here
add r2,r3, r4

has the following timing, assuming that the branch is predicted correctly:

RECOGNIZE EXECUTE

"F’\E‘ICH BRANCHBACK| Sc'li%ULE RETIRE
|SSUE VERIFY INSTR

INTO
FETCHBUF | ReseT pc PREDICTION

I-FETCH
INTO [STOMP ]
FETCHBUF

I-FETCH ScHEDULE | EXECUTE

INTO ENQUEUE AND
FETCHBUF ISSUE

COMMIT
LATCH RESULT
RESULT

I-FETCH SCHEDULE | EXECUTE
INTO ENQUEUE | [OPERAND] |  AND
FETCHBUF ISSUE

COMMIT
LATCH RESULT
RESULT

Branch mispredictions are resolved in the execute phase, where the functional unit compares the
operands and sets the program counter appropriately if it is determined that the branch direction
taken was not appropriate. Note that, in this implementation, there is no branch target buffer, so
we need not resolve instances where the braaaet was mispredicted, which also must be
accounted for in the case where both the direction and the target are speculative.

The following diagram gives the timing for a mispredicted branch instruction, using the code
example above. Assume the PC is pointing ab#tginstruction.

RECOGNIZE
BRANCHBACK|

EXECUTE
I-FETCH RETIRE
RECOGNIZE INSTR

BRANCHMISS

SCHEDULE
INTO AND
FETCHBUF | peger pe ISSUE

I-FETCH
INTO [STOMP]
FETCHBUF

I-FETCH
INTO [STOMP]
FETCHBUF

I-FETCH
INTO [STOMP]
FETCHBUF

STALL EXECUTE
e I-FETCH SCHEDULE

INTO ENQUEUE AND commir

LATCH RESULT
RESETPC | FETCHBUF ISSUE RESULT

STATE I.FETCH SCHEDULE | EXECUTE
I-FETCH ENQUEUE oS commiT
LATCH RESULT

INTO
RESETpc | FETCHBUF ISSUE RESULT

Jump-and-link instructions are implemented just like branch misspeculations; they are resolved in
the execute phase, at which point the target address is known. The timing therefore looks much
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like the mispredicted branch example, above: during the execute phase, the target address for the
JALR is known, and théranchmisssignal is set, just as if the instruction were a misspeculated
branch. The program counter is redirected during this cycle, and instruction-fetch down the
correct path resumes on the following cycle.

6. Example Operation

The following figures illustrate (in excruciating detail) the movement of instructions, data, and
status information through the pipeline during the execution of a relatively simple piece of code.
This is done to animate the design, hopefully giving a clear picture of what happens in the
machine. The following code example is used (addresses are included for clarity):

#
# main loop: loads a number and then a variable number of data items to subtract
# from the first. at end, saves result in “diff” memory location

#

0000 Iw rl, r0, argl

0001 Iw r3, r0, count

0002 loop: Iw r2, r4, arg2

0003/4 movi  r7, sub # resolves to 2 instructions
0005 jalr 17,17

0006 addi  r3,r3, -1

0007 beq r3, 0, exit

0008 addi r4, r4, 1

0009 beq r0, r0, loop

000a exit: sw rl, rO, diff

000b halt

#

# subtract function: operands in r1/r2, return address in r7. result -> r1
#

000c sub:  nand r2,r2,r2

0ood addi  r2,r2,1

000e add rl, rl, r2

000f jalr ro, r7

#

# data: count is the # of items to subtract from argl (in this case, 1: arg2)
# diff is where the result is placed
#

0010 count: fill 1
0011 argl: fill 9182
0012 arg2: fill 737
0013 diff: fill O

The execution takes 29 cycles and illustrates many of the possible behaviors: ALU operations,
memory operations, BEQ instructions predicted-taken and predicted-not-taken, BEQ instructions
predicted correctly and incorrestly, JALR instructions (which use the branch-miss facility and
behave like a mispredicted BEQ), instruction-enqueue of 0, 1, and 2 instructions, the filling up of
the instruction queue thereby blocking enqueue and fetch, retirement of instructions, etc. Only the
first dozen cycles are shown; the remainder are given iRig@-00.1.v Execution Example

The state of the machine at the start of each cycle is shown in Figures 5-16. Dark lines indicate
movement of data (which is latched at the end of the cycle and is visible in machine state on next
cycle). The top bit of the instruction ID indicates the result bus to watch: memory bus vs. ALU
bus. For instance, a LW enqueued in slot 3 will tag the register file with id 13 rather than 03; this
notifies other instructions not to latch the results of the LW'’s add-immediate operation that simply
generates the target address. Opcode values are prefixed with “a” indicating ALU instructions,
“b” indicating branch operations, or “m” for memory operations. Non-obvious fields of the 1Q
entry (not all are fields; some are just signal@gtid, Done, Out, Branch-taken, Memory-issuable,
Address-generated, Issualfte ALU), Slot-numberandX = kill the instruction The figures start
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PC:
REGISTER COMMIT
FILE: BUSES:
RN RVAL v sc B# v RSLT ID rT EX
INSTRUCTION 0: 0000 1 00 0: 0 xxxx x0 0x 00
MEMORY 1: 0000 1 xx 1: @ xxxx x1 Ox 00
2: 0000 1 xx
BRANCH  FETCH I—r‘ 3:0000 1 xx
BACK: BUFFERS: 4: 0000 1 xx
vPC on FB v INST PC on FB v INST PC 5: 0000 1 Xx
(00012 | ->A:1aft1l 0000 > - C: 0 RXXX XXXX 6: 0000 1 Xx
->B: 1acl0 0001 > -- D: 0 XXXX XXXX 7: 0000 1 xx
INSTRUCTION ” ”

QUEUE:
HTIQVDOBMAISX OP T EX RSLT ARGO ARG1 v sc ARG2 v sc PC

HT 0: OX X X/0 X 010 0 "X 0X XX XXXX|XXXX XXXX X XX XXXX XXX XXX
L L O XXX 0O[X 000 X 0X XX XXKX XKXX XXXX X XX XXXX X XX XXXX
L 2: 0 XXX 0[X 000 X 0XXXXXKX XKXX XXXX| X XX XXXX X XX XXXX
L3O XX X0X 000X 0XXXXXXX XKXX XXXX|X XX XXXX X XX XXXX
L A0 XX X0[X 000X 0X XX XXXX XKXX XXXX|X XX XXXX X XX XXXX
L 50 XXX 0O[X 000 X 0X XXXXKX XKXX XXXX X XX XXXX X XX XXXX
L B0 XX X0X000[X0XXXXXXX XKXX XXXX|X XX XXXX X XX XXXX
L 7O XX X 0X 000X 0X XX XXXX XKXX XXXX|X XX XXXX X XX XXXX
MEMORY ALU-0 ALU-1
QUEUE: INPUT REGISTERS: INPUT REGISTERS:
S ADDR DATA OP ID v ARGO ARG1 ARG2OP B ID PC v ARGO ARG1 ARG2 OP B ID PC
0 XXXX XXXX "X XX \ 0 \xxxx x*xx xx>{x X X *x x*xx\ \ \ \ 0 ﬁ(xxx x*xx xx>4x X X *x xﬁxx\ \ \
0 XXXX XXXX "X XX
0><x>1xx xx“xx l ‘ ‘ ‘ ‘
DATA
MEMORY
o
VRSLTIDEX vIDPC VRSLTIDEX vIDPC
l { ‘O*XXXX%O ‘ OM(){XXX‘ ‘ ‘O#xxxx*o ‘ OMO{XXX‘ ‘

VRSLTID EX ALU-0 ALU-0 ALU-1 ALU-1

[0 xxx || RESULT BUS BRANCHMISS RESULT BUS BRANCHMISS

MEMORY

RESULT BUS

Figure 5: EXECUTION CYCLE 2

on cycle 2; during cycle 1 we fetched instructions at pc=0000 and pc=0001 (two LW instructions)
into the two first fetch buffers (A and B) and incremented the program counter by 2.

During execution cycle 2, we enqueue the first two instructions into the slots indicated by the tail
pointer (labeled “T” at the side of the instruction queue); this includes reading from the register
file: the register value RVAL, its valid bit V, and its source SC. During this phase, the targets of the
two LW instructions (r1 and r3) are tagged “invalid” and their SC fields directed to the two LW
instructions. Note the top bits of these IDs are “1”, indicating that the final result will come from
the memory bus, not an ALU bus. We also fetch the next two instructions (an LW and a LUl—a
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PC:
REGISTER COMMIT
FILE: BUSES:
RN RVAL v sc B# v RSLT ID T EX
INSTRUCTION 0: %000 1 DO 0: ¢ 0000 10/01 00
MEMORY 1: 0000 0 10 1: 0 0000 1103 00
2: 0000 1 xx
BRANCH FETCH n—l 3:00000 11
BACK: BUFFERS: 4: 0000 1 xx
v PC on FB v INST PC on FB v INST PC 5: 0000 1 xx
(00004 | --A:0a411 0000 -> C: 1 hal2 0002 I 6:0000 1 Xx
-- B: 0 ac10 0001 ->D: 1 7¢c00 0003 — 7:0000 1 xx
INSTRUCTION ” ”

QUEUE:
HTIQVDOBMAISX OP T EX RSLT ARGO ARG1 v sc ARG2 v sc PC

H.0:10000021/00m5 010000000011 0000 1/00 0000 1 xx 0000
..1:100000110m4 0300 0000 0010 0000 1 00 0000 1 00 0001
T2:0xXX0 X020 “XJOK XX XXXX XXXX XXXX X XX XXXX X XX XXXX
. 3:0xxx0x020 XX XXXX XXXX XXXX|X XX XXXX X XX XXXX
LA O XXX O[X 020 X B XXXXKX XKXX XXXX X XX XXXX X XX XXXX
.5:0xxx0x020 XW XX XXXX XXXX XXXX| X XX XXXX X XX XXXX
.6:0xxx0x020 x# XX XXXX XXXX XXXX| X XX XXXX X XX XXXX
L 7:0xxx0x020 x# XX XXXX XXXX XXXX| X XX XXXX X XX XXXX
|
MEMORY ALU-0 ‘ ALU-1
QUEUE: INPUT REGISTERS: INPUT REGISTERS:
S ADDR DATA OP ID v ARGO ARG1 ARG2OP B ID PC v ARGO ARG1 ARG2 OP B ID PC
0 XXXX XXXX "X XX ‘ 0 P<xxx x*xx xxﬁx X X *x x*xx‘ ‘ ‘ ‘ 0 ‘xxxx x*xx xxﬁx "X X *x x*xx‘ ‘ ‘
0 XXXX XXXX "X XX
0 x>ixx XX “x xl ‘ ‘ ‘ ‘
DATA
MEMORY
o
VRSLTIDEX vIDPC VRSLTIDEX vIDPC
l { ‘O*XXXX%O ‘ OM(){XXX‘ ‘ ‘O#xxxx*o ‘ OMO{XXX‘ ‘

VRSLTID EX ALU-0 ALU-0 ALU-1 ALU-1

(00000 x| RESULT BUS BRANCHMISS RESULT BUS BRANCHMISS

MEMORY

RESULT BUS

Figure 6: EXECUTION CYCLE 3

MOVI is replaced by the assembler with a LUI+ADDI pair) into the alternate fetch buffers (C and
D). The program counter is incremented by two.

During cycle 3, the first two instructions issue address-generate operations to the ALUs; we
enqueue the second two instructions; and we fetch the third pair of instructions: an ADDI and a
JALR. The program counter is incremented by two. During the enqueue phase, the targets of the
two instructions (LW ->r2, LUl -> r7) are set appropriately: the SC field for r2 will become “11”
and the SC field for r7 will become “03”, indicating that LUI's result will be on an ALU bus. Note
that thev/src fields in each of the two issuing LW instructions will become invalid and refer to the
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PC:

REGISTER COMMIT
FILE: BUSES:
RN RVAL v sc B# v RSLT ID rT EX
INSTRUCTION 0: 000 1 00 0: 0000 1001 00
MEMORY 1: 0000 0 10 1: 0.0000 1103 00
2: 00000 12
BRANCH FETCH I—‘_‘ 3:00000 11
BACK: BUFFERS: 4: 0000 1 xx
v PC on FB v INST PC on FB v INST PC 5: 0000 1 xx
(00006 | ->A:13f8c 0004 . --C:04ai2 0002 6: 0000 1 Xx
-> B: 1 ff80 0005 —> --D: 0 7c00 0003 7: 0000 0 03
INSTRUCTION ” ”
QUEUE:
HTIQVDOBMAISX OPITEXRSLT ARGO ARG1 v sc ARG2 v sc PC
H.0:1010000/00m50100 00000011 0000 000 0000 1 xx 0000
..1:101000/0 00/m5 03 00 00000010 0000 0 01 0000 1 00 0001
..2:100000[2 00m5 02 00 0000 0012 0000 1 xx 0000 1 xx 0002
[ ..3:100000110a3J07 000000 0000 0000 1 00 0000 1 00 Q003
e T4:0xXX0 X020 XK XX XXXX XXXX[XXXX X XX XXXX X XX XXXX
.50 XX X0[X0 20 "X P XX XXXX XXXX XXXX|X XX XXXX X XX XXXX
L B0 XX X0O[X020 "X P XX XXXX XXXX XXXX|X XX XXXX X XX XXXX
L7 0 XX X0O[X 020 X B XX XXXX XXXX XXXX|X XX XXXX X XX XXXX
MEMORY ALU-0 ALU-1
QUEUE: INPUT REGISTERS: INPUT REGISTERS:
S ADDR DATA OP ID v ARGO ARG1 ARG2 OP B ID PC v ARGO ARG1 ARG2 OP B ID PC
0 XX kXX X XX (10011 0000 0011 a0 0 00 0000 | [10010 0000 0010 a0 0 01 0001 | \
0 XXXX XXXX "X XX | | | | I
0 XXXX XXXX "X XX ‘ ‘ ‘ ‘
b
DATA
MEMORY
o
VRSLTIDEX vIDPC VRSLTIDEX vIDPC
| (10011000 000012 | (10010010 0610012 |
VRSLTID EX ALU-0 ALU-0 ALU-1 ALU-1
ﬂ- RESULT BUS BRANCHMISS RESULT BUS BRANCHMISS
MEMORY
RESULT BUS

Figure 7: EXECUTION CYCLE 4

LW instruction itself. This allows the Tomasulo-style logic to be used to forward the results of an

address-generation back into the memory instruction’s 1Q entry.

During cycle 4, the results of the two address-generate operations are placed on the two ALU-
result busses and feed their results to 1Q slots 0 and 1. The second pair of instructions issue to
ALUs: the LW in slot 2 sends an address-generate operation and the LUI in slot 3 sends a LUI.
The third pair of instructions (ADDI+JALR) is enqueued in slots 4 and 5 and sets register-source
values appropriately: because both target r7, the SC field for r7 becomes the ID of the latter of the

two instructions—that of the JALR, which is enqueued into slot 5.

Electrical & Computer Engineering, University of Maryland at College Park
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PC:
REGISTER COMMIT
FILE: BUSES:
RN RVAL v sc B# v RSLT ID T EX
INSTRUCTION 0: 0000 1 0O 0: § 0011 10/01 00
MEMORY 1: 000 0 10 1: 0 0010 11/03 00
2: 0000 0 12
BRANCH FETCH r‘—I 3:00000 11
BACK: BUFFERS: 4:0000 1 xx
v PC on FB v INST PC on FB v INST PC 5: D000 1 xx
E -- A: 0 3f8c 0004 -> C: 1 pdff 0006 L~ 6:0000 1 xx
-- B: 0 ff80 0005 -> D: 1 £c02 0007 — 7: 0000 0 05
INSTRUCTION ” ”

QUEUE:
HTIQVDOBMAISX OP T EX RSLT ARGO ARG1 v sc ARG2 v sc PC

H.0:100001000m5 01000011 0011 0011 1/00 0000 1 xx 0000
..1:1000021000m50300 0010 0010 0010 1 01 0000 1 00 0001
..2:101000000m502 00 00000012 0000 0 02 0000 1 xx 0002
[ ..3:101000000a307 000000 0000 0000 1 00 0000 1 00 0003
..4:100000100/a1 07 00 0000 000c 0000 0 03 0000 1 xx 0004
..5:100000010b7]07 00 0000 0000 0000 0 04 0005 1 00 0005
T6:0XX X0 X010 XJOX XX XKXX XXXX XXXX X XX XXXX X XX XXXX
L 7:0xxx0x010 xwxxxxxxxx XX XXXX|X XX XXXX X XX XXXX
|
MEMORY ALU-0 ‘ ALU-1
QUEUE: INPUT REGISTERS: INPUT REGISTERS:
S ADDR DATA OP ID v ARGO ARG1 ARG2OP B ID PC v ARGO ARG1 ARG2 OP B ID PC
0 XXXX XXXX "X XX \ 1 p012 qOOO 0q12 a0 p 02\ 0q02 \ \ \ 1 \OOOO qooo OQOO a3 p 03{ Oq03 \ \
0 XXXX XXXX "X XX | | | | | |
0 XXXX XXXX X X ‘ ‘ ‘ ‘
b
DATA
MEMORY
VRSLTIDEX vIDPC VRSLTIDEX vIDPC
by (10012020 00200015 | (10000030 0030004 |

VRSLTID EX ALU-0 ALU-0 ALU-1 ALU-1

[0 xXx || RESULT BUS BRANCHMISS RESULT BUS BRANCHMISS

MEMORY

RESULT BUS

Figure 8: EXECUTION CYCLE 5

During cycle 5, the target addresses for the first two LW instructions are compared, and the “M”
bits for each are set appropriately, indicating whether the memory operation can be issued to the
memory queue. The LW/LUI pair is executed and the results placed on the ALU busses (LUI will
be marked “done” in its 1Q entry). The ADDI instruction in IQ slot 4 can issue, even though its
register operand is tagged invalid in the 1Q slot, because its source ID matches that on ALU-1
result bus. There are two IQ slots open; two instructions are enqueued. Two more are fetched
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PC:
REGISTER COMMIT
FILE: BUSES:
RN RVAL v sc B# v RSLT ID rT EX
INSTRUCTION 0: 0000 1 00 0: 9 0011 10/01 00
MEMORY 1: 0000 0 10 1: 0 0010 11/03 00
2: 0000 0 12
BRANCH  FETCH 3:00000 06
BACK: BUFFERS: 4: 0000 1 xx
v PC on FB v INST PC on FB v INST PC 5: 0000 1 xx
-> A: 18201 0008 -- C: 0 2dff 0006 6: 0000 1 xx
->B: 1 £078 0009 -- D: 0 ¢c02 0007 7: 0000 0 05
INSTRUCTION
QUEUE:

HTIQVDOBMAISX OPIT EXRSLT ARGO ARG1 v sc ARG2 v sc PC

HT0:1/00 011 00/0 m501 00 0011 0011]0011 1 00 0000 1 xx 0D0O
..1:10000100]0om5 03 00 0010 0010 0010 1 01 0000 1 00 0001
..2:10000100[0m5 02000012 0012 0012 1 02 0000 1 xx 0002
..3:11/000 10 0[0a3 07 00 0000 0000 0000 1 00 0000 1 00 0003
[ .4:101000[00|0/al 07 00 0000 000c 0000 1 03 0000 1 xx 0004
..5:10000010[0b7 07 00 0000 0000 0000 0 04 0005 1 00 0005
..6:100 0000 1f0 a1]03 00 0000 ffff 0000 0 11 0000 1 05 0006
..7:100 0000 1f0 b6|00 00 0000 0002 0000 1 00 0000 0 06 Q007
MEMORY I ALU-0 ' ALU-1
QUEUE: INPUT REGISTERS: INPUT REGISTERS:
S ADDR DATA OP ID v ARGO ARG1 ARG2 OP B ID PC v ARGO ARG1 ARG2 OP B ID PC
0 XXXX XXXX "X XX [1000c 0000 000c a0 0 04 0004 | | [00000 0000 0000 &3 0 03 0003 \
0 XXXX XXXX "X XX | | | |
0 XXXX XXXX "X X ‘ ‘ ‘ ‘
'
DATA
MEMORY
o
VRSLTIDEX VvIDPC VRSLTIDEX vIDPC
| i \1¢00cogo ~ 0/04 0011 (00000030 | |[0030004 |

VRSLTID EX ALU-0 ALU-1 ALU-1

m- RESULT BUS BRANCHMISS RESULT BUS BRANCHMISS

MEMORY

RESULT BUS

Figure 9: EXECUTION CYCLE 6

During cycle 6, the LW instruction in ig0 is issued to the memory queue (its M tag is 1). On the
following cycle, we will see this reflected in the memq’s entries. the JALR in ig5 is issued to an
ALU because its register operand is available on ALU-0 result bus. The instruction queue is full
(no entries marked “invalid”), and therefore the enqueue mechanism is stalled. Normally, this
would not stall the fetch mechanism (later cycles will illustrate this) ... normally, another two
instructions would be fetched into the alternate fetch buffers. However, there is a predicted-taken
branch in fetchbuf B (the backwards brarmdyq r0,r0, loop), so the program counter is redirected
during this cycle. Fetch will commence down the predicted path on the following cycle.
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PC:
REGISTER COMMIT
FILE: BUSES:
RN RVAL v sc B# v RSLT ID 1T EX
INSTRUCTION 0: p000 1 00 0: 9 0011 10/01 60
MEMORY 1: 000 0 10 1: 0 0010 11/03 00
2: 0000 0 12
BRANCH  FETCH 3:0000 006
BACK: BUFFERS: 4:0000 1 xx
v PC on FB v INST PC on FB v INST PC 5: D000 1 xx
> A: 1 B201 0008 -~ C: 0 2dff 0006 6: 0000 1 xx
-> B: 1 £078 0009 -- D: 0 ¢c02 0007 7: 0000 0 05
INSTRUCTION
QUEUE:
HTIQVDOBMAISX OPITEX RSLT ARGO ARG1 v sc ARG2 v sc PC
HT0:1/01 001 00/0 m501 00 0011 0011]0011 1 00 0000 1 xx 0D0O
..1:100011000m50300 0010 0010 0010 1 01 0000 1 00 0001
..2:10000100[0m5 02000012 0012 0012 1 02 0000 1 xx 0002
..3:11/000 10 0|0a3 07 00 0000 0000 0000 1 00 0000 1 00 0003
[ . 4:110001/00|0/al 07 00 000c 000c 0000 1 03 0000, 1 xx 0004
..5:1010000 0[ob7 07 00 0000 0000 000c 1 04 0005 1 00 0005
..6:1000000 0[1a1 03 0D 0000 ffff 0000 0 11 0000 1 05 0006
..7:1000000 0|1 b6 00 00 0000 0002 0000 1 00 0000 O 06 0007
MEMORY 1 ALU-0 ALU-1
QUEUE: INPUT REGISTERS: INPUT REGISTERS:
S ADDR DATA OP ID v ARGO ARG1 ARG2 OP B ID PC v ARGO ARG1 ARG2 OP B ID PC
10011 0000 m5 10 10000 000c 0000 b7 0 05/0005 | | 00000 0000 0000 a3 0 03 0003 \
0 XXXX XXXX "X XX | | | I I |
0 XXXX XXXX "X XX ‘ ‘ ‘ ‘
N
DATA
MEMORY
o
VRSLTIDEX VvIDPC VRSLTIDEX vIDPC
| I 10006050 1 05000¢ \ (00000030 0630004 \
VRSLTID EX ALU-0 ALU-0 ALU-1 ALU-1
m- RESULT BUS BRANCHMISS RESULT BUS BRANCHMISS
MEMORY
RESULT BUS

Figure 10: EXECUTION CYCLE 7

During cycle 7, the second LW instruction is issued to the memory queue (note that both were
“ready” on the previous cycle, but we can only issue one per cycle). The “status” of the previous
memory operation is “1” which indicates that it is in mid-request (once the status is “3” the
operation is complete). The JALR issued on the previous cycle is on the ALU-0 result bus, and it
has set the BRANCHMISS valid-bit high, indicating a change in control flow. This stalls both
fetch and enqueue and invalidates the fetchbuf entries. The program counter will be redirected,
using the valid produced by the JALR instruction. Instructions to be stomped on are tagged “1” in
the “X” column: iq6 and iq7—those following the JALR. Those not stomped can still issue (iql).
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PC:
REGISTER COMMIT
FILE: BUSES:
RNRVALvsC  B#VRSLTID T EX
INSTRUCTION 0: 6000 1 00 0: 9 0011 10/01 60
MEMORY 1: 0000 0 10 1: 00010 1103 00
2:0000 0 12
BRANCH  FETCH n—l 3:00000 11
BACK: BUFFERS: 4: 0000 1 xx
vPC on FB v INST PC on FB v INST PC 5: 0000 1 Xx
(00002 | ->A:0B2010008 -- C: 0 2dff 0006 6: 0000 1 xx
-> B: 0 £078 0009 -- D: 0 ¢c02 0007 7: 0000 0 05
INSTRUCTION
QUEUE:

HTIQVDOBMAISX OPIT EXRSLT ARGO ARG1 v sc ARG2 v sc PC

H.0:10100 10[00m5 010000110011 0011 1/00 0000 1 xx 0000
.1:101001000m50300 0010 0010 0010 1 01 0000 1 00 0001
..2:1000211000m5 020000120012 0012 1 02 0000 1 xx 0002
..3:11/000 10 0]o/a3 07 00 0000 0000 0000 1 00 0000 1 00 0003
..4:11/000 10 0|0 a1 07 00 000c/000c 0000 1 03 0000/ 1 xx 0004
..5:11/000 10 0{ob7 07 00 0006 0000 000c 1 04 0005 1 00 0005
.T6:0000000(p0al 0300 POOO ffff 0000 O 11 0000 1 05 0006
..7:0000000 0[0 b6 00 00 0000 0002 0000 1 00 0000 0 06 Q007
MEMORY I ALU-0 ALU-1
QUEUE: INPUT REGISTERS: INPUT REGISTERS:
S ADDR DATA OP ID v ARGO ARG1 ARG2 OP B ID PC v ARGO ARG1 ARG2 OP B ID PC
20011 0000 m5 10 (00000 000c 0000 b7 0 05 0005 | | [00000 0000 0000 &3 0 03 0003 \
10010 0000 m5 11 I I I I I I
0 XXXX XXXX "X X ‘ ‘ ‘ ‘
'
DATA
MEMORY
VRSLTIDEX VvIDPC VRSLTIDEX vIDPC
l i (00006050  0/05000¢ \ (00000030 0/¢30004 \

VRSLTID EX ALU-0 ALU-0 ALU-1 ALU-1

ﬂ- RESULT BUS BRANCHMISS RESULT BUS BRANCHMISS

MEMORY

RESULT BUS

Figure 11: EXECUTION CYCLE 8

At the beginning of cycle 8, we see that the stomped instructions are now marked “invalid” in the
instruction queue, and the tail pointer has been reset appropriately. The fetch buffers have been
marked “invalid.” Several instructions (iq3, ig4, and iq5) are “done” and thus ready to commit, but
are held up by the three LW instructions at the head of the queue. The program counter has been
rest appropriately (it has the value of the branchmiss status from the previous cycle). Most
importantly, the contents of the register file reflect the correct machine state: on the previous cycle
the addi instruction in iq6 targeted r3, which had “06” as its source. Now, register r3 has the
previous source of r3 listed: the LW in igl. During this cycle, another LW is issued to the memory
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PC:
REGISTER COMMIT
FILE: BUSES:
RN RVAL v sc B# v RSLT ID 1T EX
INSTRUCTION 0: 000 1 00 0: 0 0011 10/01 00
MEMORY 1: 000 0 10 1: 0 0010 11/03 00
2: 0000 0 12
BRANCH FETCH I—n 3:00000 11
BACK: BUFFERS: 4:0000 1 xx
v PC on FB v INST PC on FB v INST PC 5: D000 1 xx
E -> A: 1 4902 000c L --C:0 2dff 0006 6: 0000 1 xx
-> B: 1 2901 000d — -~ D: 0¢c02 0007 7: 0000 0 05
INSTRUCTION ” ”

QUEUE:
HTIQVDOBMAISX OP T EX RSLT ARGO ARG1 v sc ARG2 v sc PC

H.0:10100 10[00m5 010000110011 0011 1/00 0000 1 xx 0000
.1:101001000m50300 0010 0010 0010 1 01 0000 1 00 0001
..2:101001000m5 020000120012 0012 1 02 0000 1 xx 0002
..3:11/0001000 a3 07 00 0000 0000 0000 1 00 0000 1 00 0003
..4:11/0001000al07 00000c 000c 0000 1 03 0000/ 1 xx 0004
..5:11/0001000 b7 07 0000060000 000c 1 04 0005 1 00 0005
.T6:0000000[00al 0300 POOO ffff 0000 O 11 0000 1 05 0006
..7:0000000 00 bg 000D 0000 0002 0000 1 00 0000 O 06 0007
MEMORY ALU-0 ALU-1
QUEUE: INPUT REGISTERS: INPUT REGISTERS:
S ADDR DATA OP ID v ARGO ARG1 ARG2 OP B ID PC v ARGO ARG1 ARG2 OP B ID PC
30011 0000 m5 10 [0 0000 000c 0000 b7 0 05/0005 | | 00000 0000 0000 a3 0 03 0003 \
2 0010 0000 m5 11 I I I I I I
10012 0000 m5 12 ] ] ] ]
N
DATA
MEMORY
VRSLTIDEX vIDPC VRSLTIDEX vIDPC
| i (00006 050  0/05000¢ \ (00000030 0630004 \

VRSLTID EX ALU-0 ALU-0 ALU-1 ALU-1

ﬂ- RESULT BUS BRANCHMISS RESULT BUS BRANCHMISS

MEMORY

RESULT BUS

Figure 12: EXECUTION CYCLE 9

gueue. Two instructions are fetched. Very little else happens because most of the enqueued
instructions are done.

During cycle 9, the first of the three LW instructions becomes ready in the memory queue; its
result will be sent on the memory result bus on the following cycle. The two instructions fetched
on the previous cycle (the NAND and ADDI at the top of th& subroutine) are enqueued and
the next two subroutine instructions (ADD and JALR) are fetched. The states of the memory
gueue entries are incremented by one.
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PC:
REGISTER COMMIT
FILE: BUSES:
RN RVAL v sc B# v RSLT ID T EX
INSTRUCTION 0: 0000 1 0O 0: ¢ 0011 10/01 00
MEMORY 1: 000 0 10 1: 0 0010 11/03 00
2: 0000 0 07
BRANCH FETCH r‘—I 3:00000 11
BACK: BUFFERS: 4: 0000 1 xx
v PC on FB v INST PC on FB v INST PC 5: D000 1 xx
E -- A: 0 4902 000c -> C: 10482 000e 6: 0000 1 xx
-- B: 0 2901 000d -> D: 1 £380 000 7: 0000 0 05
INSTRUCTION
QUEUE:

HTIQVDOBMAISX OPIT EXRSLT ARGO ARG1 v sc ARG2 v sc PC

HT0:1/01 001 000 m501 00 0011 0011/0011 1 00 0000 1 xx 0DOO
.1:101001000mb50300 0010 0010 0010 1 01 0000 1 00 0001
.2:101001000m5 02000012 0012 0012 1 02 0000 1 xx 0002
..3:11/0001/000a3 07 00 00000000 0000 1 00 0000 1 00 0003
__..4:11/0001000[al 07 00 000c/000c 0000 1 03 0000 1 xx 0004
..5:11/0001000b7 07 000006 0000 000c 1 04 0005 1 00 0005
..6:100000000 a2 02000000 0002 0000 0 12 0000 0 12 000c
..7:100000000 al 02000000 0001 0000 0 06 0000 1 00 000d
MEMORY ALU-0 ALU-1
QUEUE: INPUT REGISTERS: INPUT REGISTERS:
S ADDR DATA OP ID v ARGO ARG1 ARG2 OP B ID PC v ARGO ARG1 ARG2 OP B ID PC
00011 0000 m5 10 [0 0000 000c 0000 b7 0 05/0005 | | [00000 0000 0000 &3 0 03 0003 \
30010 0000 m5 11 I I I I I I
20012 0000 m5 12 ] ] ] ]
'
DATA
MEMORY
VRSLTIDEX vIDPC VRSLTIDEX vIDPC
| i (00006 050  0/05000¢ \ (00000030 0630004 \

VRSLTID EX ALU-0 ALU-0 ALU-1 ALU-1

m- RESULT BUS BRANCHMISS RESULT BUS BRANCHMISS

MEMORY

RESULT BUS

Figure 13: EXECUTION CYCLE 10

During cycle 10, the result of the first LW instruction is seen on the memory result bus. THe result

is latched at the end of the cycle, when the instruction will be tagged “done”. No instructions are
issued to functional units because the two potential instructions are dependent on the LW
instruction in iq2 (its result will become available in two cycles). Because the I1Q is full, enqueue

is stalled. Because there are no predicted-taken branches (i.e. backwards branches) in the fetch
buffers, instruction fetch is not stalled; the two instructions following the subroutine are fetched
(they are actually data, but they will be discarded when the JALR at the end of the subroutine
takes effect).
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PC:
REGISTER COMMIT
FILE: BUSES:
RN RVAL v sc B# v RSLT ID T EX
INSTRUCTION 0: %000 1 DO 0: { 23de 10/01 00
MEMORY 1: 0000 0 10 1: 0 0010 11/03 00
2: 0000 0 07
BRANCH  FETCH 3:00000 11 ]
BACK: BUFFERS: 4: 0000 1 xx
v PC on FB v INST PC on FB v INST PC 5: 0000 1 xx
E -- A: 1 0001 0010 -> C: 10482 000e 6: 0000 1 xx
-- B: 1 23de 0011 ->D: 1 380 000 7: (0000 0 05
INSTRUCTION
QUEUE:
HTIQVDOBMAISX OP T EX RSLT ARGO ARG1 v sc ARG2 v sc PC
HT0:1/11 001 0 0]0 M5/01 00 23He 0011]0011 1 00 0000 1 x% 0DOO —
..1:10(1001000m503 000010 0010 0010 1 01 0000 1 00 0001
..2:101001000m5 02000012 0012 0012 1 02 0000 1 xx 0002
..3:11/0001000a3 07 000000 0000 0000 1 00 0000 1 00 0003
__ ..4:11/000100 0al 07 00 000c|000c 0000 1 03 0000 1 xx 0004
.5:11/0001000b707 0000060000 000c 1 04 0005 1 00 0005
.6:100000000a2 020000000002 0000 0 12 0000 0 12 000c
.7:100000000a102 0000000001 0000 0 06 0000 1 00 000d
MEMORY ALU-0 ALU-1
QUEUE: INPUT REGISTERS: INPUT REGISTERS:
S ADDR DATA OP ID v ARGO ARG1 ARG2 OP B ID PC v ARGO ARG1 ARG2 OP B ID PC
00011 0000 m5 10 [0 0000 000c 0000 b7 0 05/0005 | \ [0/0000 0000 0000 a3 0 03 0003 | \
00010 0000 m5 11 I | | | I I
310012 0000 m5 12 ‘ ‘ ‘ ‘
N
DATA
MEMORY
o
VRSLTIDEX vIDPC VRSLTIDEX vIDPC
l i \ 0 quoe ofs 0 \ q q)s \ooop \ \ 0 pooo qs 0 \ q q)s \000{4 \
VRSLTID EX ALU-0 ALU-0 ALU-1 ALU-1
n- RESULT BUS BRANCHMISS RESULT BUS BRANCHMISS
MEMORY
RESULT BUS

Figure 14: EXECUTION CYCLE 11

During cycle 11, the first LW instruction commits its result to the register file. On the following
cycle, its 1Q slot will be tagged as invalid, marking it available for a new instruction. The result for
the second LW instruction is seen on the memory result bus. Instructions in ig6 and iq7 are stalled
waiting on the third LW instruction. Enqueue is stalled waiting for an available IQ entry. Fetch is
stalled waiting for an available fetch buffer.
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PC:
REGISTER COMMIT
FILE: BUSES:
RN RVAL v sc B# v RSLT ID T EX
INSTRUCTION 0: %000 1 DO 0: 1 0001 11/03 00
MEMORY 1:23de 1 10 1: 0 0012 12/02 00
2: 0000 0 07
BRANCH  FETCH 3:00000 11 ]
BACK: BUFFERS: 4: 0000 1 xx
v PC on FB v INST PC on FB v INST PC 5: 0000 1 xx
(00010 | -~ A:10001 0010 -> C: 1 D482 000k I 6: 0000 1 xx
-- B: 1 23de 0011 ->D: 1 £380 000 7: (0000 0 05
INSTRUCTION
QUEUE:
HTIQVDOBMAISX OP T EX RSLT ARGO ARG1 v sc ARG2 v sc PC
T0:01100100 0 m>5 01/00/23de 0011 0011 1 00 00CO0 1 xx|0000
H.1:111001000m503/00 0001 0010 0010 1/01 0000 1 00 0001 —
..2:101001000m5 02000012 0012 0012 1 02 0000 1 xx 0002
..3:11/0001000a307 000000 0000 0000 1 00 0000 1 00 0003
__ ..4:11/000100 0al 07 00 000c|000c 0000 1 03 0000 1 xx 0004
.5:11/0001000b707 0000060000 000c 1 04 0005 1 00 0005
.6:100000000a2 020000000002 0000 0 12 0000 0 12 000c
. 7:100000000a102 0000000001 0000 0 06 0000 1 00 000d
MEMORY ALU-0 ALU-1
QUEUE: INPUT REGISTERS: INPUT REGISTERS:
S ADDR DATA OP ID v ARGO ARG1 ARG2 OP B ID PC v ARGO ARG1 ARG2 OP B ID PC
00011 0000 m5 10 [0 0000 000c 0000 b7 0 05/0005 | \ [0/0000 0000 0000 a3 0 03 0003 | \
00010 0000 m5 11 I I I I I I
0 0012 0000 m5 12 ] ] ] ]
N
DATA
MEMORY
o
VRSLTIDEX VvIDPC VRSLTIDEX vIDPC
l i (00006050 | 005 000¢ \ (00000030 | 0030004 \
VRSLTID EX ALU-0 ALU-0 ALU-1 ALU-1
n- RESULT BUS BRANCHMISS RESULT BUS BRANCHMISS
MEMORY
RESULT BUS

Figure 15: EXECUTION CYCLE 12

During cycle 12, the second LW instruction commits. The slot opened up by the LW instruction
(slot ig0) is the enqueue-target for one of the instructions in the fetchbufs (the ADD instruction in
fetchbuf C). The result for the third LW instruction is seen on the memory result bus. This will
enable the waiting instructions to issue to functional units on the following cycle. Fetch is still
stalled because there are no empty fetch buffers.

Electrical & Computer Engineering, University of Maryland at College Park 30



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design ~ — An Out-of-Order RiSC-16

PC:
REGISTER COMMIT
FILE: BUSES:
RN RVAL v sc B# v RSLT ID T EX
INSTRUCTION 0: %000 1 DO 0: 1 02e1 12/02 00
MEMORY 1: 23de 0 00 1: 1 0000 03/07 00
2: 0000 0 07
BRANCH  FETCH 3:0001111 ]
BACK: BUFFERS: 4: 0000 1 xx
v PC on FB v INST PC on FB v INST PC 5: 0000 1 xx
E -- A: 1 0001 0010 -> C: 0 0482 000e 6: 0000 1 xx
-- B: 1 23de 0011 ->D: 1 e380 000 — 7:0000 0 05
INSTRUCTION
QUEUE:
HTIQVDOBMAISX OP T EX RSLT ARGO ARG1 v sc ARG2 v sc PC
..0:1000000 10/a0 01 00 Gooo/ 0002 23de 1 10 0000 0 07 G00e
T1:011001020m5 03000001 0010 0010 1 01 0000 1 000001
H.2:111001000m5 02|00 02el 0012 0012 1|02 0000 1 xx 0002 —
..3:11/0001000a3 07 000000 0000 0000 1 00 0000 1 00 0003 —
.4:11/0001000/al07 00 000c|000c 0000 1 03 0000/ 1 xx 0004
.5:11/0001000b707 0000060000 000c 1 04 0005 1 00 0005
.6:100000100a2 02000000 0002 02el 1 12 02el 1 12 000c
. 7:1000000 10 a1]02 00 0000 0001 0000 O 06 0000 1 00 000d
MEMORY ALU-0 ' ALU-1
QUEUE: INPUT REGISTERS: INPUT REGISTERS:
S ADDR DATA OP ID v ARGO ARG1 ARG2 OP B ID PC v ARGO ARG1 ARG2 OP B ID PC
00011 0000 m5 10 [0 0000 000c 0000 b7 0 05/0005 | \ [0/0000 0000 0000 a3 0 03 0003 | \
0 0010 0000 m5 11 I | | | I I
0 0012 0000 m5 12 ‘ ‘ ‘ ‘
N
DATA
MEMORY
o
VRSLTIDEX vIDPC VRSLTIDEX vIDPC
l i \ 0 quoe ofs 0 \ q q)s \ooop \ \ 0 pooo qs 0 \ q q)s \000{4 \
VRSLTID EX ALU-0 ALU-0 ALU-1 ALU-1
mn- RESULT BUS BRANCHMISS RESULT BUS BRANCHMISS
MEMORY
RESULT BUS

Figure 16: EXECUTION CYCLE 13

During cycle 13, two instructions commit, opening up two more slots in the instruction queue.
The NAND instruction in iq6 that was waiting on the LW in ig2 issues to a functional unit. The IQ
slot opened up by the LW instruction in ig1l, which committed on the previous cycle, is filled by
the instruction in fetchbuf D: the JALR instruction that marks the end of the subroutine.
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