
Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

puter
Chen

ddress
nd two
ntion,
lways
neral
a total

they
indi-
inter-

An Out-of-Order RiSC-16
Tomasulo + Reorder Buffer = Interruptible Out-of-Order

ENEE 446: Digital Computer Design, Fall 2000
Prof. Bruce Jacob, http://www.ece.umd.edu/~blj/
This paper describes an out-of-order implementation of the 16-bit Ridiculously Simple Com
(RiSC-16), a teaching ISA that is based on the Little Computer (LC-896) developed by Peter
at the University of Michigan.

1. RiSC-16 Instruction Set
The RiSC-16 is an 8-register, 16-bit computer. All addresses are shortword-addresses (i.e. a
0 corresponds to the first two bytes of main memory, address 1 corresponds to the seco
bytes of main memory, etc.). Like the MIPS instruction-set architecture, by hardware conve
register 0 will always contain the value 0. The machine enforces this: reads to register 0 a
return 0, irrespective of what has been written there. The RiSC-16 is very simple, but it is ge
enough to solve complex problems. There are three machine-code instruction formats and
of 8 instructions. The instruction-set is given in the following table.

The instruction-set is described in more detail (including machine-code formats) inThe RiSC-16
Instruction-Set Architecture. System calls are described only briefly in the present document;
are special instances of the JALR instruction in which the immediate value is non-zero (and
cates the system-call ID). This addition to the instruction-set architecture is made to support

Assembly-Code Format Meaning

add regA, regB, regC R[regA] <-  R[regB] +  R[regC]

addi regA, regB, immed R[regA] <-  R[regB] +  immed

nand regA, regB, regC R[regA] <- ~(R[regB] &  R[regC])

lui regA, immed R[regA] <-  immed & 0xffc0

sw regA, regB, immed R[regA] -> Mem[ R[regB] + immed ]

lw regA, regB, immed R[regA] <- Mem[ R[regB] + immed ]

beq regA, regB, immed

if ( R[regA] == R[regB] ) {
PC <- PC + 1 + immed
(if label, PC <- label)

}

jalr regA, regB PC <- R[regB], R[regA] <- PC + 1

PSEUDO-INSTRUCTIONS:

nop do nothing

halt stop machine & print state

lli regA, immed R[regA] <- R[regA] + (immed & 0x3f)

movi regA, immed R[regA] <- immed

.fill immed initialized data with value immed

.space immed zero-filled data array of size immed
Electrical & Computer Engineering, University of Maryland at College Park 1



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

rrupts

three

s.” In

lined
14)

encies
cond
-order
ly, the
f-order
wing

more

ing
ime,
ction

onger
access:
. Only

-
the

eline.
rupts and interrupt-handling. System calls, interrupts/exceptions, and the handling of inte
and exceptions are described in more detail in the documentRiSC-16 System Architecture.

2. Background
To begin with, a little background on today’s out-of-order designs: in particular, there are
important papers that helped shape contemporary out-of-order computing:

R. M. Tomasulo. “An efficient algorithm for exploiting multiple arithmetic units.”IBM Journal of
Research and Development, 11(1):25–33. January 1967.

J. E. Smith and A. R. Pleszkun. “Implementation of precise interrupts in pipelined processor
Proc. 12th Annual International Symposium on Computer Architecture (ISCA-12), pp. 36–44. June
1985.

G. S. Sohi and S. Vajapeyam. “Instruction issue logic for high-performance, interruptable pipe
processors.” InProc. 14th Annual International Symposium on Computer Architecture (ISCA-,
pp. 27–34. June 1987.

The first paper gives a concrete hardware architecture for resolving inter-instruction depend
through the register file, thereby allowing out-of-order issue to the functional units; the se
paper describes several mechanisms for handling precise interrupts in pipelines with in
issue but out-of-order completion, the reorder buffer being one of these mechanisms; final
third paper combines the previous two concepts into a mechanism that supports both out-o
instruction issue and precise interrupts (as well as branch misspeculations). The follo
sections go into a little more detail on each.

Tomasulo’s Algorithm
Tomasulo called his mechanism the Common Data Bus. Because the mechanism is
expansive than a simple bus, it is usually referred to asTomasulo’s algorithminstead. The
underlying principle is this:when the data is stale, keep track of where new data will be com
from. Here is how the principle is used. The register file holds data. For brief windows in t
data words in the register file are stale, in that they are soon to be overwritten by an instru
that has not yet completed. Take, for example, the following code:

lw r1, 16(r2)
addi r1, r1, 1

Ignoring dependences between the instructions, the load instruction would be likely to take l
than the add-immediate, because the load performs both an add-immediate and a memory-
it requires an add-immediate of register 2 with the value 16 to generate the load address
after the address is generated can the memory access begin. Therefore, by the time that theaddi is
ready to read the value ofr1 out of the register file, it is likely that the load is still in mid
execution. If this is the case, thenr1 contains stale data that cannot be used for computation by
addi or any other instruction that follows the load.

Previous architectures would either stall in this instance or use forwarding paths in the pip
Tomasulo’s algorithm uses a different mechanism: instead of keeping track of the data inr1, it
keeps track of the data’s source, i.e. the load instruction which will updater1 in the near future.
When the load is decoded, it is enqueued in a numberedreservation stationawaiting execution;r1
is tagged as invalid; and the register file holds the reservation station ID instead ofr1’s contents.
Electrical & Computer Engineering, University of Maryland at College Park 2



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

e new
the
valid,
ID is

iting
ALU

s that
tions
nds is
oon as
ore or
nitors
o that

ncies
eous

s well
n.

rder
ugh

briefly
what

even
r. For

and
erent
were

were
h an
achine
(else
ing a

e of
chine

tion.
as an
ction
cycle
Therefore, rather than keeping track of the data value, the register keeps track of where th
data will come from. When theaddi instruction is decoded and enqueued, it reads the ID from
register file and is placed in its own reservation station, knowing that one of its operands is in
but also knowing the unique ID of the instruction that will produce the operand. That unique
the ID of the reservation station holding the load instruction.

This information is used to forward operands from the functional units to the instructions awa
data in reservation stations. Whenever a a functional unit produces a result value (either an
result or a load-word memory request), the functional unit producing the value broadcast
value as well as the corresponding instruction’s ID on the Common Data Bus. All instruc
sitting in reservation stations look to this bus and gate in the data whenever one of its opera
invalid and the corresponding tag matches the ID of the data on the common data bus. As s
an instruction’s operands are all valid, the instruction is ready to execute, whether this is bef
after the instructions that come before it in the instruction stream. The register file also mo
this bus, and if the ID on the bus matches the ID in any invalid register, the data is gated in t
register, and the register is marked as valid.

The architecture is very simple but extremely powerful and capable of resolving all depende
through the register file. It also provides a form of register renaming that allows the simultan
or out-of-order execution of multiple reads and writes to the same register. The algorithm (a
as numerous variations on it) has become a staple in modern high-performance CPU desig

As an aside, the fixed-point pipeline in the IBM System/360 Model 91 supported out-of-o
completion as well, but in a slightly simpler form: all register data communication was thro
the register file. The pipeline supported no forwarding paths. The mechanism is described
in the same IBM Journal of R&D issue as Tomasulo’s algorithm, but the description is some
incomplete. The documentIBM 360/91’s Out-of-Order Fixed-Point Pipeon the class website
describes the issue and commit mechanism (at least, my interpretation of it) in more detail.

Reorder Buffer
The reorder buffer was developed to solve the problem that, in many pipelined computers—
those with in-order instruction issue—execution results are frequently produced out-of-orde
example, this happens when functional units have different latencies. This is what Smith
Pleszkun mean by “pipelined” processors: in-order pipes with functional units that have diff
latencies, the most common pipeline of the paper’s time. In previous machines, results
typically written to the register file as soon as they were produced, and if the results
produced out-of-order, they could therefore update machine state out-of-order. Suc
organization causes problems in the case of handling precise interrupts, during which the m
state is required to reflect that of a sequential machine with in-order instruction completion
the interrupt is not considered “precise”). Smith and Pleszkun solve the problem by provid
mechanism to allow instructions thatgenerate resultsout-of-order to becompletedin-order.
Changes to the state of the machine (register file, memory system) are limited to the tim
instruction completion, which is handled in program order, and therefore the state of the ma
always reflects that of a sequential implementation.

The fundamental idea is this decoupling of instruction execution and instruction comple
Whereas in previous pipeline organizations execution and completion could be treated
atomic multi-cycle operation, the reorder buffer separates out the concept of instru
completion as a phase of the instruction life cycle that may or may not happen on the
Electrical & Computer Engineering, University of Maryland at College Park 3



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

k for
fetch,
sy to

ll the
uction
to the
ions at
es two
her in
gister
as
s are
in the
ts: in

code,
re not
e the
This
ore, all
t ends

ntly,
paper

ion in
isms
y the
cally

use it
cannot
aper
upport

d the
that

rder
urpose
following the generation of results. Thus, the reorder buffer behaves like a holding tan
instructions while they are in the process of being executed (including decode, operand
execution by an ALU, possible memory access, and writeback to the register file). It is ea
envision many possible structures that would perform such a function.

The reorder buffer described in the paper is a circular queue, in which each entry holds a
instruction state necessary to carry one instruction through the various phases of instr
execution (operand fetch, execution, register file writeback, etc.). Instructions are placed in
queue and taken out of the queue in-order. The original implementation enqueues instruct
the time of instruction issue—i.e. once all the operands are available. The paper describ
variations: one in which the operands must be obtained though the register file and anot
which operands can be read directly out of the reorder buffer itself if the latest copy of a re
value is present in theresult portion of a reorder buffer entry holding an instruction that h
finished executing but has not yet written its result to the register file. Though instruction
enqueued in program order and only when their operands are available, while they are
reorder buffer program order does not dictate the sequencing of any particular even
particular, the instructions might finish executing out of program order.

When an instruction is successfully dequeued from the reorder buffer, its results arecommittedto
the machine state. At this point, the instruction is said to beretired. While an instruction is in the
process of execution, i.e. before retiring, it may cause an exceptional condition (invalid op
TLB miss, segmentation violation, trap instruction, etc.). To ensure that such exceptions a
handled speculatively or out-of-order, the handling of exceptional conditions is treated lik
updating of machine state: exception handling does not occur until instruction commit time.
ensures that no previous instructions have caused as-yet-unhandled exceptions. Theref
exceptions are handled in program order, and no exception is handled for an instruction tha
up being discarded (as a result of a branch misprediction, for example).

As with Tomasulo’s algorithm, the concept is very simple but extremely powerful. Conseque
it has appeared in nearly every high-performance architecture in the last half-decade. The
describes two mechanisms in addition to the reorder buffer that perform the same funct
slightly different ways: the future file and history buffer. Typically, these and other mechan
that perform the function of ensuring in-order commitment of machine state are all called b
microprocessor design community “reorder buffers” whether the description is techni
accurate or not.

Register Update Unit
Note that Tomasulo’s algorithm mentions nothing about precise interrupts. In fact, beca
stipulates that results are to be sent to the register file as soon as they are produced, it
support precise interrupts without modification. Note also that the original reorder buffer p
mentions nothing about out-of-order issue to execution units. Though the mechanism may s
such behavior, it is not addressed in the paper.

Why am I mentioning any of this? Though these two mechanisms (Tomasulo’s algorithm an
reorder buffer) solve very important problems, their existence pointed out a gaping hole
would be very important were it filled: the lack of a mechanism that combines both out-of-o
issue and precise interrupts, which would provide supercomputer performance to general-p
computers using modern operating systems facilities.
Electrical & Computer Engineering, University of Maryland at College Park 4



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

ng as
rwise,
ulo’s
ssue
t

rtual
th of
g or
ut-

nes;
rpose
neral-

orithm
iage of

t for

ular
ueued
, and
ism as
is not

t and
ction’s
n read
RUU
thered
from

r file.
nds is
ome

does

unit,
rithm
ts (two
acing
ueue
the
oon as
r not.
Out-of-order instruction issue is important because it allows instructions to begin executi
soon as they are ready, thereby freeing up the functional units as early as possible. Othe
artificial stall cycles are introduced into the pipeline, lengthening program execution. Tomas
algorithm provided a template for building a high performance machine with out-of-order i
and impreciseinterrupts. However, support forpreciseinterrupts became increasingly importan
roughly in step with the rising importance of operating systems offering multitasking and vi
memory—hardware support for precise interrupts greatly simplifies the implementation of bo
these facilities (indeed, it is rather difficult to imagine an implementation of either multitaskin
virtual memorywithouta precise-interrupt facility). When the reorder buffer was introduced, o
of-order instruction issue was typically found only in high-end scientific-computing machi
out-of-order completion was the problem more commonly encountered in general-pu
machines. However, the problem remained to implement out-of-order instruction issue in ge
purpose machines that also needed precise interrupts.

A few years after the reorder buffer paper appeared, and twenty years after Tomasulo’s alg
appeared, the problem was solved. Sohi and Vajapeyam describe in their paper the marr
Tomasulo’s algorithm and the reorder buffer; they call their mechanism theregister update unit
(RUU). This mechanism provides both out-of-order issue to functional units and suppor
precise interrupts.

The RUU is a very intuitive merger of Tomasulo’s algorithm and the reorder buffer. It is a circ
queue into which instructions are enqueued in-order and out of which instructions are deq
in-order. Meanwhile, instruction operands are gathered according to Tomasulo’s algorithm
instructions are sent to functional units as soon as all their operands are valid. The mechan
described in the paper only supports single-instruction enqueue/issue/commit; however, this
inherent to its design—it is easily extended to wider implementations.

The primary place of deviation with reorder buffer operation is at instruction enqueue: firs
foremost, an instruction is enqueued as soon as an RUU slot is available, whether the instru
operands are available or not. Also, whereas in the reorder buffer scheme an instruction ca
its operands out of the reorder buffer if available and out of the register file otherwise, in the
scheme an instruction never reads from other RUU entries directly. Rather, operands are ga
from the functional-unit result buses as in Tomasulo’s algorithm, and they are also gathered
the commit bus, which carries the result of the currently committing instruction to the registe
Therefore, if at the time of instruction-enqueue the most recent version of one of its opera
found in the result field of another instruction’s RUU entry, the operand does not bec
immediately available to the instruction as it would in the reorder buffer scheme, but it
become available as soon as the value is committed to the register file.

3. RiSC-16 Out-of-Order Implementation: Overview
The RiSC-16 out-of-order design is very much like Sohi & Vajapeyam’s register update
except that it is twice as wide. The instruction encode/issue/commit logic is Tomasulo’s algo
extended to handle dual-enqueue, dual-commit, and three-way issue to the execute uni
ALU, one memory). The mechanism handles branch mispredictions and interrupts by pl
instructions not in a disjoint set of reservation stations but rather in a circular instruction q
that functions similarly to Smith & Pleszkun’s reorder buffer. Like the register update unit,
design departs from the reorder buffer in several ways. First, an instruction is enqueued as s
an instruction-queue slot is available, whether the instruction’s operands are available o
Electrical & Computer Engineering, University of Maryland at College Park 5



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

if the
til the

tch, we
uction
of the
ay

), and
thm.
re, the
Second, instruction operands are not read from the instruction queue at enqueue time
register file does not have the latest copy of a data word; rather, the instruction must wait un
data is available on the commit buses, the ALU buses, or the memory bus.

Because the computer-architecture field cannot seem to agree on definitions for issue/dispa
do not use the term “dispatch” and instead use the term “enqueue” to mean placing an instr
into the instruction queue and the term “issue” to mean sending a ready instruction to one
functional units. This is illustrated in Figure 1. The architecture is two-way fetch, two-w
enqueue, three-way issue and execute (two ALU instructions and one memory instruction
two-way commit. Branch prediction is a simple backward-taken/forward-not-taken algori
The instruction queue has eight entries and is integrated with the memory queue; therefo

IQ0 IQ1 Instruction N+2 IQ7IQ2

Instruction N+1Instruction N

INSTRUCTION
MEMORY

FETCH
BUFFERS

RESULT
BUSES

OPERAND 1 OP ID

INSTR
QUEUE

ISSUE
BUS

ENQUEUE
BUS

DATA
MEMORY

OP ID OPERAND 2 OPERAND 1 OP IDOPERAND 2ADDRESSDATA

COMMIT
BUS

COMMIT
BUS

——

REGISTER
FILE

ALU0
BUS

ALU1
BUS

MEMORY
BUS

. . .

EXECUTE
PHASE

ISSUE
PHASE

ENQUEUE
PHASE

FETCH
PHASE

Figure 1: Overview of the pipeline organization

OP IDADDRESSDATA

OP IDADDRESSDATA
Electrical & Computer Engineering, University of Maryland at College Park 6



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

of up
eous
in the
neous

etch,
t called

n out-
out of

laced
cket
fetch
a’s
nqueue
.

s and
eue.
is a
there

d for
fer is a

hown
e in-
-
ain

icular

-taken
ueue

an be
wait
result
rning
the

f an
system effectively has eight miss-status holding registers (MSHRs), enabling the handling
to eight outstanding cache misses. However, this is artificially limited to three simultan
requests being handled, to better reflect current DRAM design: there are three entries
memory queue, which handles the memory interface and thus limits the number of simulta
requests.

The figure shows four of the phases through which all committed instructions pass: f
enqueue, issue, and execute. Each of these takes one cycle. In this document, they are no
“stages” because that term implies more rigid timing and ordering, whereas instructions in a
of-order core spend variable lengths of time in each stage and can visit some stages
program order. The following sections describe each of the phases in more detail.

Fetch Phase
During the fetch phase, exactly two instructions are read from the instruction memory and p
into one of the two fetch buffers, each of which is wide enough to hold an instruction-fetch pa
of two 16-bit instructions, plus the associated PC values for the instructions fetched. If no
buffer is available (e.g., if both of them are full or part full), then fetch stalls. Like the Alph
fetch/enqueue mechanism, there are two buffers, each as wide as a fetch packet, and the e
mechanism does not move on to the second fetch buffer until the first is completely drained

Enqueue Phase
During the enqueue phase, up to two instructions are taken from one of the fetch buffer
placed at the tail of the instruction queue. The slots are designated “tail0” and “tail1” in the qu
If the first instruction in the buffer is a BEQ that is predicted taken (in this implementation, it
simple backward-taken/forward-not-taken algorithm), the second instruction is squashed. If
are instructions in the other fetch buffer (the one that is currently not being considere
enqueue), those instructions are squashed as well. If the second instruction in the fetch buf
taken branch, only instructions in the alternate fetch buffer are squashed.

An example of two instructions being enqueued (the first of which is not a taken branch) is s
in Figure 2. The register-file access looks very similar to the decode logic in the single-issu
order pipeline described inThe Pipelined RiSC-16. However, the contents of the instruction
queue entry differ slightly from the contents of the pipelined RiSC’s ID/EX register. The m
differences are the status bits intended to indicate where in the instruction life cycle this part
instruction is. The fields of the instruction-queue entry are shown in Figure 3.

When an instruction in one of the fetch buffers is enqueued or squashed (by a predict
branch), it is marked as invalid in the fetch buffer. Once both instructions are invalid, the enq
mechanism looks at the alternate fetch buffer.

Data-Incoming Phase
When an instruction is enqueued, it may or may not have all of its operands. If it does, it c
sent immediately to the appropriate functional unit on the following cycle. Otherwise, it must
in the instruction queue for its operands. During this phase, instructions scan the various
buses for their data. These buses include the ALU0/ALU1 Buses which have values retu
from the ALUs, the Memory Bus which has load values returning from data memory, and
Commit Bus which has the values that are currently being written to the register file. I
Electrical & Computer Engineering, University of Maryland at College Park 7



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

input-
riate
case
ue at

n ALU
known.
lid, or
n is
pon

re-
uction
RG2

a store

lt once
tion’s
instruction sees that one or more of its operands is invalid and itssrc tag matches theID of the
data on one of these buses, it gates the associated data into its local operand storage.

Issue Phase
Once all of an instruction’s operands are valid, its operands, opcode, and ID are sent to the
registers of the appropriate functional unit. The instruction’s opcode directs it to the approp
bus: LW/SW instructions go to the memory queue; all other opcodes go to an ALU. The
when more than two ALU instructions or more than one memory instruction are ready to iss
the same time is covered in a later section on scheduling.

Memory operations are a special case of issue, because they actually issue twice: once to a
to generate the target address, and then to the memory queue when the address is
Therefore, the issue logic considers an instruction ready to issue if all of its operands are va
if it is a memory operation and its ARG1 operand is valid. In this instance, the instructio
issued to an ALU as anaddi instruction, and its results are gated-in to the ARG1 operand u
completion, thereby overwriting the previous valid contents. Upon completion of theaddi
instruction, theA bit in the instruction-queue entry is set, indicating that there is no need to
issue the address-generation portion of the instruction. For load-word operations, the instr
is ready to be issued to the data memory immediately. For store-word operations, the A
operand must also be valid, as it contains the value to be stored. Also, as described below,
instruction must be issued at the time of commit.

Execute Phase
Issue and execute do not happen in the same cycle: it is a two-cycle process to obtain a resu
all of an instruction’s operands are valid. As described in the previous section, the instruc

. . .Tail0 Tail1

PC— OP rA rCrB 0000

FETCH
BUFFERS

INSTRUCTION
QUEUE

OP rA rCrB 0000

SRC1

SRC2

SRC1

SRC2
SRC1 SRC2

Extend-Imm Extend-Imm

ENQUEUE
BUS

REGISTER

FILE

Figure 2: Example enqueue of two instructions

PC— — —

V D O TYP OP RESULTTGTB PC

ARG1

ARG2

EXC

srcv

srcv

ARG0M A
Electrical & Computer Engineering, University of Maryland at College Park 8



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

On the
rious
single
s is an

scribed
are on
rule is
n this

into its
ts

e from
: if an
wed
s very
operands, opcode, and ID are moved to the ALU’s input registers during the issue phase.
following cycle the instruction is executed, and the resulting values are sent out on the va
result buses to be latched at the end of the cycle. Memory operations take longer than a
cycle, so load results appear on the memory bus several cycles after they are initiated (thi
arbitrary choice — it is not inherent to the architecture).

In the instruction-queue entries, results are gated into the various operand registers as de
above, but they are also gated into the RESULT registers of those instructions whose IDs
the result buses. When this happens, the instruction is marked “done.” The exception to this
the ALU result for the effective-address generation component of a memory operation: whe
result appears on the bus, the instruction is not yet done.

Commit Phase
When an instruction has completed, it gates the contents of one of the various result buses
RESULT register and sets thedone bit. This signifies that the instruction is ready to commit i
result to the “permanent” machine state: the register file and/or data memory.

As described in the section above on reorder buffers, this mechanism protects the machin
instructions that would be squashed because of exceptions or mispredicted branches
instruction commits its result to the register file and is later found to have immediately follo
an instruction that causes an exception or a branch instruction that was mispredicted, it i

Figure 3: FIelds of an instruction-queue entry

V valid bit: signifies whether or not the entry’s contents are valid

D done bit: signifies whether or not the instruction has completed execution

O out bit: signifies whether or not the instruction has been sent to a functional unit

B branch bit: signifies that the instruction was predicted taken

M memory-issue bit: signifies that the instruction is ready to be sent to the data memory

A address bit: signifies that the instruction’s memory address has been generated (only
applies to LW/SW operations)

TYP the instruction’s “type” which indicates whether or not it touches memory, and whether
or not it can cause a change in control-flow ... note that, since this can be deduced from
the opcode, it is not strictly necessary

OP instruction opcode

TGT the instruction’s register target, or zero if the instruction has no target (BEQ, SW)

EXC the exception code, or zero if the instruction has caused no exception — note that
HALT instructions place an EXC_HALT value directly into this register

RESULT the register-file value that the instruction produces, if any

ARG0 the instruction’s extended/shifted immediate value

ARG1 the instruction’s first register operand

ARG1_v valid bit for ARG1: indicates whether the value in ARG1 is valid

ARG1_src source bit for ARG1: specifies the data-source for ARG1 (the location in the instruction
queue of the instruction that will produce the value)

ARG2 the instruction’s second register operand

ARG2_v valid bit for ARG2: indicates whether the value in ARG2 is valid

ARG2_src source bit for ARG2: specifies the data-source for ARG2 (the location in the instruction
queue of the instruction that will produce the value)

PC the address of the instruction, to be used if the instruction causes an exception or a
branch-mispredict
Electrical & Computer Engineering, University of Maryland at College Park 9



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

ain
to the

ion is

those
in the
later. If
do so.

other

by a
a

gram
ushed
ction

e are
tails.

this
fies
e for
omes
the
older
ugh
ntil an

oxes
uctions.

valid
the

ny
nal is
heme
ady to
r an
difficult to un-do the register-file update. It is even more difficult to un-do changes to m
memory. Therefore, changes of this nature to the “permanent” machine state (as opposed
contents of the instruction queue) are only allowed to occur once it is known that the instruct
non-speculative and definitely causes no exceptions.

On every cycle, the commit logic considers the top two instructions in the instruction queue:
at the head of the queue, labeled “head0” and “head1.” If there is a mispredicted branch
machine, commit does not proceed, unless the mispredicted branch is in the head1 slot or
head0 is ready to commit, it does so. If head0 and head1 are both ready to commit, both
Otherwise, nothing happens.

When an instruction commits, its result is sent to the register file and made available to
instructions needing operands. If the instruction is a SW, it is sent to the memory system.

If an instruction that would otherwise be allowed to commit causes an exception, indicated
non-zero value in theEXC field of its instruction-queue entry, the machine reacts just like
branch-mispredict event: the program counter is redirected; the exceptional instruction’s pro
counter, held in the instruction-queue entry, is saved in a hardware register; the pipeline is fl
from the exceptional instruction to just before tail0; and execution begins with the first instru
in the exception handler. Exception-handling is covered in more detail later.

4. Mechanisms that Require a Little More Detail
The previous section gives a high-level overview of what is going on in the pipeline, but ther
a few details that are left out for brevity and clarity. This section delves into some of these de

Instruction Scheduling
Instruction scheduling is the process of assigning ready instructions to functional units. In
implementation, all non-memory functional units (i.e., ALUs) are identical, which simpli
things immensely. However, there are only two ALUs, and on any given cycle it is possibl
more than two instructions to be ready for execution. This is where instruction-scheduling c
in. It is the logic that prioritizes instructions. Traditionally, instructions are prioritized by age:
oldest instructions in the pipeline should execute before newer instructions because
instructions are more likely to be holding up other instructions in the pipe, either thro
dependencies or just by the fact that some instructions are ready to commit but cannot u
older instruction finishes execution.

Figure 4 gives a stylized logic diagram of the instruction-scheduling mechanism. The b
represent instruction-queue entries, and shaded boxes indicate the presence of valid instr
Instruction-queue entries put out two signals:issueand islot. The 1-bitissuesignal signifies that
the instruction is ready to issue. The signal is high if the instruction-queue entry contains a
instruction, the instruction is not done executing, the instruction is not currently “out” (in
process of being executed), and its operands are both valid. The 2-bitislot signal is the ID of the
ALU for which the instruction is destined, or an invalid ALU number if there are too ma
instructions ready to issue. If an instruction is putting out a valid slot number and its issue sig
high, then that instruction is sent to the input-registers of the indicated ALU. Note that the sc
requires logic equivalent to saturating adders—otherwise, if there are enough instructions re
issue, successive adds could yield a valid ALU ID for a low-priority instruction, even afte
invalid ALU number has been produced.
Electrical & Computer Engineering, University of Maryland at College Park 10



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

a
dozen
et al.

ent an

sult
ction
et its
is the

ar to
once.
) that

pipe
at the
ensure
ximum

e the
ceding
Note that the critical path scales as O(n) for n entries in the instruction queue. This is clearly
problem, as instruction windows are increasing in size—we are currently at the several-
mark and pushing rapidly toward the several-hundred mark. A recent ISCA paper by Henry,
looked at ways to reduce this to O(logn), which is obviously much better.

An optimization: because the issue/execute process is a two-cycle operation from the mom
instruction’s operands become valid, a chain ofn dependent instructions would take 2n cycles to
execute. This is not particularly efficient. An improvement is to allow data on the ALU re
buses to be latched back into the ALU input-registers directly. To accomplish this, an instru
must recognize when a value will be available on an ALU bus on the following cycle and s
issuesignal high when it sees that the ID of an instruction currently in the execute phase
same as one of its operandsrc values.

Memory Operations
The decision to allow an instruction to proceed to the memory subsystem is very simil
instruction scheduling. The difference is that only three memory requests can be in transit at
This corresponds roughly to the design of today’s DRAM architectures (e.g. Direct Rambus
allow pipelined requests to memory but can handle a maximum of three requests in the
simultaneously. Thus, while the instruction-scheduling mechanism need only ensure th
instruction issue-width (two) is never exceeded, the memory-scheduling mechanism must
that the memory issue-width (one) is never exceeded and must also ensure that the ma
degree of concurrency (three) is never exceeded.

In this implementation, the memory-scheduling is done in two cycles: in the first cycle, onc
instruction’s operands are ready, the instruction’s address is compared to those of all pre

Figure 4: Instruction scheduling logic

IQ0

IQ1

IQ2

IQ3

IQ4

IQ5

IQ6

IQ7

HEAD

TAIL

ISSUE4

ISLOT4

ISSUE5

ISLOT5

ISSUE6

ISLOT6

ISSUE7

ISLOT7

ISSUE0

ISLOT0

ISSUE1

ISLOT1

ISSUE2

ISLOT2

ISSUE3

ISLOT3

+

+

+

+

+

+

+

ISSUEx = IQx.v & ~IQx.d & ~IQx.o & IQx.arg1_v & IQx.arg2_v

ISLOTx = SATURATING-ADD( ISSUEx-1, ISLOTx-1)

LOGIC:
Electrical & Computer Engineering, University of Maryland at College Park 11



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

if no
ready

eue on

m, i.e.
ds are

nd are
known

known;
wed to
emory
in a
allow

that an

re are
shed
of the

ion
ll the

can
This
it, and

ue are
ust

gister
uction

tion

t is

the
memory instructions. If there are no address conflicts with preceding instructions, and
preceding instructions are ready to issue to the memory queue, the instruction is marked as
to issue to the memory queue. The memory request is then sent to the 3-entry memory qu
the following cycle.

An address conflict occurs whenever the reordering of two accesses might cause a proble
when they access the same memory location and one of them is a store instruction. Loa
allowed to bypass any store instruction whose target address is known to be different a
allowed to bypass any loads whether the target address of the bypassed load instruction is
or not. Loads are not allowed to bypass store instructions whose addresses are not yet
there is a chance that the store’s address might end up being the same. Stores are allo
bypass one another once their addresses are known to be different. Note that, while this m
architecture works well in a uniprocessor setting, it can cause enormous problems
multiprocessor setting. Note also that many more aggressive implementations exist that
speculative bypassing and then, at a later point, repair any damage done if it is determined
address conflict occurred between bypassed memory operations.

Branch Mispredictions
Though branch mispredictions and precise interrupts require virtually identical support, the
a few differences. Here is one of the most significant examples: when the pipeline is flu
because of an exception, the entire instruction queue is flushed, whereas only a portion
instruction queue is flushed when a branch mispredict is detected.

Why is this important? It is not particularly difficult to delete only a subset of the instruct
queue’s entries. The difficulty comes in maintaining the coherence of the register file: if a
instructions in the instruction queue are flushed, the entire contents of the register file
immediately be set tovalid because all the outstanding instructions have been cancelled.
causes no inconsistencies because the register file is only updated on instruction comm
therefore its contents are always valid, up to and including the last committed instruction.

However, when a branch mispredict is detected, only a portion of the instructions in the que
flushed; therefore, the state of the register file is partially valid, partially invalid. The core m
determine very quickly which subset of the register file’s contents are valid, and, for each re
that remains invalid, the processor must determine the ID of the latest non-squashed instr
that will update that register.

Take, for example, the following instruction-queue contents:

HEAD: iq3 add r1, r2, r3
iq4 nand r3, r4, r5
iq5 nand r4, r5, r6
iq6 add r1, r3, r4
iq7 beq r1, r0, foobar
iq0 add r1, r4, r5

TAIL: iq1

Assume that thebeq instruction was mispredicted; therefore upon detection of the mispredic
all following instructions are removed from the instruction queue. Thus, theadd instruction in
instruction-queue slotiq0 is deleted. At the point the misprediction is detected but before i
resolved, the state of the register file indicates thatr1 is invalid and that its source is this very
instruction (theadd instruction iniq0). Recovering from the mispredicted branch means that
register file must retain theinvalid  status onr1, but its source ID should becomeiq6.
Electrical & Computer Engineering, University of Maryland at College Park 12



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

xcept
m’s
mber of
ead of
queue

imple
this

is is a
n

e of
eption
ndle
ware
p
r:

At the
x into
ution at
st be
allow

ming
vided
l

tions
peline
t
ncies,
cribes
s the
This is non-trivial, but it amounts to solving the same problem as instruction scheduling, e
that older instructions are given a lower priority, not a higher priority. Sohi & Vajapeya
solution was to use counters associated with each register; these counters indicated the nu
instructions in the RUU that targeted a given register, and they were used as the ID field inst
using a reservation station number (or, as in the RiSC-16 implementation, the instruction
entry number). The solutions are functionally equivalent.

Precise Interrupt Handling
As mentioned in the introduction, the goal is to support precise interrupts and provide a s
TLB-miss handling facility. The initial implementation does not provide such support, but
section gives an overview of the proposed interrupt-handling facility.

At instruction-commit time, a check is made to see if an instruction causes an exception. Th
simple check of the instruction’sEXC field; if this field is non-zero, the instruction caused a
exception. Once it is verified that the instruction will commit (i.e. once it is verified that non
the instructions before it cause exceptions or unexpected changes in control flow), the exc
handler takes over. For backward compatibility with implementations that do not ha
interrupts, interrupt handling is disabled by default. If interrupt handling is enabled, the hard
expects that there is anexception vector tablein memory at location 0x0000 holding sixteen jum
vectors: one for each interrupt type. The following interrupt types are the ones defined so fa

#define EXC_NONE 0
#define EXC_HALT 1
#define EXC_TLBMISS 2
#define EXC_SIGSEGV 3
#define EXC_INVALID 4

When an instruction causes an exception, that fact is recorded in its instruction-queue entry.
point when the instruction would normally commit, the exception number is used as an inde
the exception vector table to find a jump address. The pipeline is flushed and resumes exec
that location — and, if supervisor mode is implemented, privileges (i.e. supervisor mode) mu
enabled. The program counter of the exceptional instruction is held in a hardware register to
a later return of control to that point, if desired.

When the exception or interrupt handler is finished, control returns to the application, assu
that the exception is non-terminal, as in the case of most TLB misses. The mechanism pro
by most architectures is areturn-from-exceptioninstruction that jumps to the exceptiona
instruction (or to the one after it, in the case of asystem-callinstruction) and at the same time
returns the processor to user mode. The RiSC-16 does exactly this.

5. Pipeline Timing
As an instruction may spend a variable length of time in many of its phases, different instruc
can have different latencies. This is expected, as the architecture is not a rigid N-stage pi
like the MIPS/DLX. Moreover, differentclassesof instructions will most certainly have differen
latencies, because they require the use of different functional units that have different late
and some instructions require the use of multiple functional units in series. This section des
the timing behavior of the various instruction classes; the next section then illustrate
movement of instructions and their related status information through the pipeline.

In the figures, dashed lines indicate phases that can take one or more cycles.
Electrical & Computer Engineering, University of Maryland at College Park 13



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

phase
and,
e issue

the
le), an
the

rked
.

date

ted
le, the

file at

by the
ALU Instructions
ALU-type instructions (add, addi, nand, lui ) have the following timing:

The words in square brackets represent potential reasons for stalling. In the enqueue
(second cycle), an instruction can wait arbitrarily long for an open instruction-queue entry,
once an entry is available (tagged as invalid), the enqueue process takes one cycle. In th
phase (third cycle), an instruction can wait arbitrarily long for its operands, and, once
operands are valid, the issue process takes one cycle. In the commit phase (last cyc
instruction can wait arbitrarily long for the head pointer to come around, signifying that
instruction is in the next block of instructions to commit, and, once the instruction is ma
“done” and all preceding instructions have committed, the commit process takes one cycle

These are simple instructions, requiring a single cycle of execution in an ALU. They all up
the register file. They can have two register operands (add, nand), one register operand (addi), or
no register operands (lui ). As with any other type of instructions, more than one may be execu
and committed simultaneously if there are no inter-instruction dependencies. For examp
following code:

add r1, r2, r3
nand r4, r5, r6

has the following timing, assuming the necessary operands are available in the register
instruction enqueue:

Because of the optimization described earlier, a chain of dependent instructions is executed
processor core at a rate of one instruction per cycle. For example, the following chain:

lui r1, 0xabcd
lli r1, 0xabcd
add r1, r1, r2
nand r1, r1, r3

has the following timing:

[ IQ ENTRY ]

ENQUEUE
COMMIT
RESULT

[ HEAD PTR ]

LATCH
RESULT

EXECUTEI-FETCH
INTO

FETCHBUF
SCHEDULE &

ISSUE

[ OPERANDS ]

1 CYCLE

ENQUEUE
RESULT
COMMIT

LATCH
RESULT

EXECUTEI-FETCH
INTO

FETCHBUF

ENQUEUE
RESULT
COMMIT

LATCH
RESULT

EXECUTEI-FETCH
INTO

FETCHBUF

SCHEDULE
AND

ISSUE

SCHEDULE
AND

ISSUE

ENQUEUE
RESULT
COMMIT

LATCH
RESULT

EXECUTEI-FETCH
INTO

FETCHBUF

ENQUEUE
RESULT
COMMIT

LATCH
RESULT

EXECUTEI-FETCH
INTO

FETCHBUF

SCHEDULE
AND

ISSUE

[ OPERAND ]
SCHEDULE

AND
ISSUE

ENQUEUE
RESULT
COMMIT

LATCH
RESULT

EXECUTEI-FETCH
INTO

FETCHBUF

ENQUEUE
RESULT
COMMIT

LATCH
RESULT

EXECUTEI-FETCH
INTO

FETCHBUF

SCHEDULE
AND

ISSUE

[ OPERAND ]
SCHEDULE

AND
ISSUE

[ OPERAND ]
Electrical & Computer Engineering, University of Maryland at College Park 14



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

is not
ls up,
ields a

fer is
d fetch

ress to
take
ave

he two
latched
Note that the latency is increasing for each successive instruction. Clearly, this pattern
sustainable. At some point, in a long line of dependent instructions, the instruction queue fil
restricting the enqueue mechanism to one instruction per cycle, and the steady-state y
single-instruction throughput.

For example, the following code:

...
addi r1, r1, 1
add r1, r1, r2
nand r1, r1, r3
addi r1, r1, 1
add r1, r1, r2
nand r1, r1, r3
addi r1, r1, 1
add r1, r1, r2
nand r1, r1, r3
...

yields the following timing:

The reason that every instruction stalls waiting for an IQ entry is that the alternate fetch buf
filled as soon as it is emptied—e.g., as soon as the second instruction is enqueued, the thir
(getting the 5th and 6th instructions) begins.

Memory Instructions
Load instructions have the following timing:

After the target address is generated, the memory-scheduling logic compares the target add
that of every instruction earlier in the queue. This phase (“check for address conflicts”) can
an arbitrary amount of time until the instruction queue is free of conflicts. When conflicts h
been resolved, the request is sent to the memory queue, illustrated by a separation of t
instruction paths. The memory system returns the requested data three cycles later, to be
on the fourth cycle. When the data returns, thedone bit is set and the instruction can commit.

ENQUEUE
RESULT
COMMIT

LATCH
RESULT

EXECUTEI-FETCH
INTO

FETCHBUF

[ IQ ENTRY ]
RESULT
COMMIT

LATCH
RESULT

EXECUTEI-FETCH
INTO

FETCHBUF

SCHEDULE
AND

ISSUE

ENQUEUE
SCHEDULE

AND
ISSUE

ENQUEUE
RESULT
COMMIT

LATCH
RESULT

EXECUTEI-FETCH
INTO

FETCHBUF

RESULT
COMMIT

LATCH
RESULT

EXECUTEI-FETCH
INTO

FETCHBUF

SCHEDULE
AND

ISSUE

ENQUEUE
SCHEDULE

AND
ISSUE

[ IQ ENTRY ]

[ IQ ENTRY ]

[ IQ ENTRY ]

ENQUEUE
RESULT
COMMIT

LATCH
RESULT

EXECUTEI-FETCH
INTO

FETCHBUF

RESULT
COMMIT

LATCH
RESULT

EXECUTEI-FETCH
INTO

FETCHBUF

SCHEDULE
AND

ISSUE

ENQUEUE
SCHEDULE

AND
ISSUE

[ IQ ENTRY ]

[ IQ ENTRY ]

RESULT

RETIRE

[ HEAD PTR ]

COMMIT

CHECK FOR
ADDRESS

CONFLICTS

[ IQ ENTRY ]

ENQUEUE

I-FETCH
INTO

FETCHBUF
SCHEDULE &

ISSUE

[ OPERANDS ]

[ IDLE ]

TO MEMQ
SEND

WAIT 1 WAIT 2
READ

MEMORY

SET D BIT

LATCH
RESULT

IN ARG1

SET A BIT

EXECUTE

LATCH ADDR
Electrical & Computer Engineering, University of Maryland at College Park 15



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

own
pens
e is no
ately.

two
in the

that is
, the

ction

pacity.
but of
code:

ccupy
Store instructions have slightly different timing:

The primary difference is that stores wait to send anything to the memory system until it is kn
that they will definitely commit. Therefore, the wait for the head pointer to come around hap
earlier in the life cycle. Once the request has been handed off to the memory queue, ther
reason for the instruction to remain in the instruction queue, and so it is committed immedi

Here are the timings for several different combinations of memory instructions. First,
independent memory operations fetched at the same time, whose operands are available
register file at enqueue time. This shows the stall cycle introduced to the second instruction
due to the maximum issue width of memory operations (one per cycle). For example
following code:

lw r1, r0, foo1
lw r2, r0, foo2

has the following timing, with the shaded boxes indicating the cycles during which the instru
is occupying a slot in the memory queue:

Next, we look at a series of independent instructions that exceeds the memory queue’s ca
Here, memory instructions stall not because of exceeding the memory-issue width (one)
exceeding the memory queue’s capacity of simultaneous instructions (three). The following

lw r1, r0, foo1
lw r2, r0, foo2
lw r3, r0, foo3
lw r4, r0, foo4

has the following timing, the shaded boxes representing cycles during which instructions o
slots in the memory queue:

[ IQ ENTRY ]

ENQUEUE

I-FETCH
INTO

FETCHBUF
SCHEDULE &

ISSUE

[ OPERANDS ]

SEND
TO MEMQ

[ HEAD PTR ]

WAIT 1 WAIT 2
WRITE

MEMORY

INSTR
RETIRE

SET D BIT

CHECK FOR
ADDRESS

CONFLICTS
IN ARG1

SET A BIT

EXECUTE

LATCH ADDR

ENQUEUE
SCHEDULE

AND
ISSUE

CHECK FOR
ADDRESS

CONFLICTS

I-FETCH
INTO

FETCHBUF
TO MEMQ

SEND
WAIT 1 WAIT 2

READ
MEMORY

SET D BIT

LATCH
RESULT

IN ARG1

SET A BIT

EXECUTE

LATCH ADDR

CHECK FOR
ADDRESS CONFLICTS,

 AVAILABLE ISSUE SLOT

I-FETCH
INTO

FETCHBUF
WAIT 1 WAIT 2

READ
MEMORY

SET D BIT

LATCH
RESULT

IN ARG1

SET A BIT

EXECUTE

LATCH ADDR
ENQUEUE

SCHEDULE
AND

ISSUE

RETIRE

COMMIT
RESULT

RETIRE

COMMIT
RESULT

TO MEMQ
SEND

ENQUEUE
SCHEDULE

AND
ISSUE

CHECK FOR
ADDRESS

CONFLICTS

I-FETCH
INTO

FETCHBUF
TO MEMQ

SEND
WAIT 1 WAIT 2

READ
MEMORY

SET D BIT

LATCH
RESULT

IN ARG1

SET A BIT

EXECUTE

LATCH ADDR

CHECK FOR
ADDRESS CONFLICTS,
AVAILABLE ISSUE SLOT

I-FETCH
INTO

FETCHBUF
WAIT 1 WAIT 2

READ
MEMORY

SET D BIT

LATCH
RESULT

IN ARG1

SET A BIT

EXECUTE

LATCH ADDR
ENQUEUE

SCHEDULE
AND

ISSUE

RETIRE

COMMIT
RESULT

RETIRE

COMMIT
RESULT

TO MEMQ
SEND

CHECK FOR
ADDRESS CONFLICTS,

AVAILABLE ISSUE SLOT, MEMQ CAPACITY

I-FETCH
INTO

FETCHBUF
WAIT 1 WAIT 2

READ
MEMORY

SET D BIT

LATCH
RESULT

IN ARG1

SET A BIT

EXECUTE

LATCH ADDR
ENQUEUE

SCHEDULE
AND

ISSUE RETIRE

COMMIT
RESULT

TO MEMQ
SEND

CHECK FOR
ADDRESS CONFLICTS,
AVAILABLE ISSUE SLOT

I-FETCH
INTO

FETCHBUF
WAIT 1 WAIT 2

READ
MEMORY

SET D BIT

LATCH
RESULT

IN ARG1

SET A BIT

EXECUTE

LATCH ADDR
ENQUEUE

SCHEDULE
AND

ISSUE RETIRE

COMMIT
RESULT

TO MEMQ
SEND
Electrical & Computer Engineering, University of Maryland at College Park 16



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

turned
. The

d the
load or
phase.
code

at the
LU for
e load
tore
type
rently
llows
earing

es not

they
hile,

ion is

he
d and
Next, we look at the timing for an instance where a store instruction depends on the data re
from a load instruction. This shows the store stalling during the operand fetch phase
following code:

lw r1, r0, foo1
sw r1, r0, foo2

has the following timing:

Last, we look at the timing for a pair of memory instructions where the first is a load-word an
second uses the result of that load for its target address. The second instruction could be a
store instruction. This shows the second instruction stalling during the address-generation
The following two code examples produce identical timing (the difference is that the second
example shows thesw dependent on thelw throughr1 for both address and data):

lw r1, r0, foo1
sw r0, r1, foo2

lw r1, r0, foo1
sw r1, r1, foo2

The timing is shown below:

Note that, compared to ALU instructions, there is an extra cycle between the moment th
necessary operand is produced and the moment that the store instruction is issued to the A
its address generation phase. This is the extra cycle between the “latch result” cycle of th
instruction and the “execute” cycle of the store instruction after it—the cycle in which the s
instruction does “schedule and issue” operations. If the first instruction were an ALU-
instruction and not a load-word, the store would schedule and issue during the cycle cur
marked “latch addr operand.” This is not a mistake; the optimization described earlier that a
dependent ALU instructions to issue on successive cycles does not apply to operands app
on the memory bus. When an instruction obtains an operand from the memory bus, it do
schedule itself until the following cycle.

Branches and Jumps
Conditional branches that are predicted not-taken look just like ALU-type instructions:
collect their operands and are issued to the functional units to verify the prediction. Meanw
the program counter simply increments as with a regular instruction. Assuming the predict
correct, pipeline timing is not affected.

Conditional branches that are predicted taken are resolved in the enqueue phase. While tbeq
instruction is sitting in one of the fetch buffers, the predicted target address is generate

SET D BIT

ENQUEUE
SCHEDULE

AND
ISSUE

CHECK FOR
ADDRESS

CONFLICTS

I-FETCH
INTO

FETCHBUF
TO MEMQ

SEND
WAIT 1 WAIT 2

READ
MEMORY

SET D BIT

LATCH
RESULT

IN ARG1

SET A BIT

EXECUTE

LATCH ADDR

[ WAIT FOR DATA OPERAND ]
I-FETCH

INTO
FETCHBUF

INSTR
RETIRE

IN ARG1

SET A BIT

EXECUTE

LATCH ADDR
ENQUEUE

SCHEDULE
AND

ISSUE

RETIRE

COMMIT
RESULT

CHECK FOR
ADDRESS

CONFLICTS
TO MEMQ

SEND
LATCH
DATA

OPERAND
WRITE

MEMORY

SET D BIT

ENQUEUE
SCHEDULE

AND
ISSUE

CHECK FOR
ADDRESS

CONFLICTS

I-FETCH
INTO

FETCHBUF
TO MEMQ

SEND
WAIT 1 WAIT 2

READ
MEMORY

SET D BIT

LATCH
RESULT

IN ARG1

SET A BIT

EXECUTE

LATCH ADDR

[ WAIT FOR ADDRESS OPERAND ]
I-FETCH

INTO
FETCHBUF

INSTR
RETIRE

ENQUEUE

RETIRE

COMMIT
RESULT

CHECK FOR
ADDRESS

CONFLICTS
TO MEMQ

SEND
WRITE

MEMORY
IN ARG1

SET A BIT

EXECUTE

LATCH ADDR
SCHEDULE

AND
ISSUE

LATCH
ADDR

OPERAND
Electrical & Computer Engineering, University of Maryland at College Park 17



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

wing
ard for

res the
ection
fer, so
e

ode

ved in
much
placed into the program counter. Instruction fetch down the predicted path begins on the follo
cycle. Thus, there is a one-cycle penalty for predicted-taken branches. This is pretty stand
architectures without branch-target buffers. The timing:

For example, assume that the PC currently points to thebeq instruction. The following code:

back: add r2, r3, r4
nand r5, r2, r6
add r1, r2, r3
addi r1, r1, 5
...
beq r0, r1, back // PC starts here
add r2, r3, r4

has the following timing, assuming that the branch is predicted correctly:

Branch mispredictions are resolved in the execute phase, where the functional unit compa
operands and sets the program counter appropriately if it is determined that the branch dir
taken was not appropriate. Note that, in this implementation, there is no branch target buf
we need not resolve instances where the branchtarget was mispredicted, which also must b
accounted for in the case where both the direction and the target are speculative.

The following diagram gives the timing for a mispredicted branch instruction, using the c
example above. Assume the PC is pointing at thebeq instruction.

Jump-and-link instructions are implemented just like branch misspeculations; they are resol
the execute phase, at which point the target address is known. The timing therefore looks

I-FETCH
INTO

FETCHBUF
PREDICTED

PATH

FETCH
DOWN

RESET PC

RECOGNIZE
BRANCHBACK

I-FETCH
INTO

FETCHBUF RESET PC

RECOGNIZE
BRANCHBACK

[ STOMP ]
I-FETCH

INTO
FETCHBUF

INSTR
RETIRE

VERIFY
PREDICTION

EXECUTESCHEDULE
AND

ISSUE

ENQUEUE
RESULT
COMMIT

LATCH
RESULT

EXECUTEI-FETCH
INTO

FETCHBUF

ENQUEUE
RESULT
COMMIT

LATCH
RESULT

EXECUTEI-FETCH
INTO

FETCHBUF

SCHEDULE
AND

ISSUE

[ OPERAND ]
SCHEDULE

AND
ISSUE

I-FETCH
INTO

FETCHBUF RESET PC

RECOGNIZE
BRANCHBACK

[ STOMP ]
I-FETCH

INTO
FETCHBUF

INSTR
RETIRE

RECOGNIZE
BRANCHMISS

EXECUTESCHEDULE
AND

ISSUE

[ STOMP ]
I-FETCH

INTO
FETCHBUF

[ STOMP ]
I-FETCH

INTO
FETCHBUF

RESET PC

STALL
I-FETCH

RESET PC

STALL
I-FETCH

ENQUEUE
RESULT
COMMIT

LATCH
RESULT

EXECUTEI-FETCH
INTO

FETCHBUF

ENQUEUE
I-FETCH

INTO
FETCHBUF

SCHEDULE
AND

ISSUE

RESULT
COMMIT

LATCH
RESULT

EXECUTESCHEDULE
AND

ISSUE
Electrical & Computer Engineering, University of Maryland at College Park 18



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

for the
ted
n the

and
ode.

the

tions,
ctions
and

up of
ly the

dicate
n next

LU
; this
mply
tions,
IQ

e,
like the mispredicted branch example, above: during the execute phase, the target address
JALR is known, and thebranchmisssignal is set, just as if the instruction were a misspecula
branch. The program counter is redirected during this cycle, and instruction-fetch dow
correct path resumes on the following cycle.

6. Example Operation
The following figures illustrate (in excruciating detail) the movement of instructions, data,
status information through the pipeline during the execution of a relatively simple piece of c
This is done to animate the design, hopefully giving a clear picture of what happens in
machine. The following code example is used (addresses are included for clarity):

#
# main loop: loads a number and then a variable number of data items to subtract
# from the first. at end, saves result in “diff” memory location
#
0000 lw r1, r0, arg1
0001 lw r3, r0, count
0002 loop: lw r2, r4, arg2
0003/4 movi r7, sub # resolves to 2 instructions
0005 jalr r7, r7
0006 addi r3, r3, -1
0007 beq r3, 0, exit
0008 addi r4, r4, 1
0009 beq r0, r0, loop
000a exit: sw r1, r0, diff
000b halt
#
# subtract function: operands in r1/r2, return address in r7. result -> r1
#
000c sub: nand r2, r2, r2
000d addi r2, r2, 1
000e add r1, r1, r2
000f jalr r0, r7
#
# data: count is the # of items to subtract from arg1 (in this case, 1: arg2)
# diff is where the result is placed
#
0010 count: .fill 1
0011 arg1: .fill 9182
0012 arg2: .fill 737
0013 diff: .fill 0

The execution takes 29 cycles and illustrates many of the possible behaviors: ALU opera
memory operations, BEQ instructions predicted-taken and predicted-not-taken, BEQ instru
predicted correctly and incorrestly, JALR instructions (which use the branch-miss facility
behave like a mispredicted BEQ), instruction-enqueue of 0, 1, and 2 instructions, the filling
the instruction queue thereby blocking enqueue and fetch, retirement of instructions, etc. On
first dozen cycles are shown; the remainder are given in theRiSC-oo.1.v Execution Example.

The state of the machine at the start of each cycle is shown in Figures 5–16. Dark lines in
movement of data (which is latched at the end of the cycle and is visible in machine state o
cycle). The top bit of the instruction ID indicates the result bus to watch: memory bus vs. A
bus. For instance, a LW enqueued in slot 3 will tag the register file with id 13 rather than 03
notifies other instructions not to latch the results of the LW’s add-immediate operation that si
generates the target address. Opcode values are prefixed with “a” indicating ALU instruc
“b” indicating branch operations, or “m” for memory operations. Non-obvious fields of the
entry (not all are fields; some are just signals):Valid, Done, Out, Branch-taken, Memory-issuabl
Address-generated, Issuable(to ALU), Slot-number, andX = kill the instruction. The figures start
Electrical & Computer Engineering, University of Maryland at College Park 19



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

ions)

e tail
ister
f the
LW
rom
I—a
on cycle 2; during cycle 1 we fetched instructions at pc=0000 and pc=0001 (two LW instruct
into the two first fetch buffers (A and B) and incremented the program counter by 2.

During execution cycle 2, we enqueue the first two instructions into the slots indicated by th
pointer (labeled “T” at the side of the instruction queue); this includes reading from the reg
file: the register value RVAL, its valid bit V, and its source SC. During this phase, the targets o
two LW instructions (r1 and r3) are tagged “invalid” and their SC fields directed to the two
instructions. Note the top bits of these IDs are “1”, indicating that the final result will come f
the memory bus, not an ALU bus. We also fetch the next two instructions (an LW and a LU

Figure 5: EXECUTION CYCLE 2

HT IQ V D O B M A I S X OP rT EX RSLT ARG0 ARG1 v sc ARG2 v sc PC

RN RVAL v sc

on FB v INST PC

PC:

INSTRUCTION
MEMORY

on FB v INST PC

REGISTER

FETCH
BUFFERS:

INSTRUCTION

FILE:

QUEUE:

DATA
MEMORY

v PC

BRANCH
BACK:

S ADDR DATA OP ID v ARG0 ARG1 ARG2 OP B ID PC v ARG0 ARG1 ARG2 OP B ID PC

v RSLT ID EX v ID PC v RSLT ID EX v ID PC

ALU-0
BRANCHMISS

ALU-0
RESULT BUS

ALU-1
BRANCHMISS

ALU-1
RESULT BUS

ALU-0
INPUT REGISTERS:

ALU-1
INPUT REGISTERS:

MEMORY
QUEUE:

v RSLT ID EX

MEMORY
RESULT BUS

B# v RSLT ID rT EX

COMMIT
BUSES:

0002

0: 0000 1 00

1: 0000 1 xx

2: 0000 1 xx

3: 0000 1 xx

4: 0000 1 xx

5: 0000 1 xx

6: 0000 1 xx

7: 0000 1 xx

0 0012 -> A: 1 a411 0000

-> B: 1 ac10 0001

-- C: 0 xxxx xxxx

-- D: 0 xxxx xxxx

HT 0: 0 x x x 0 x 0 0 0 `x 0x xx xxxx xxxx xxxx x xx xxxx x xx xxxx

.. 1: 0 x x x 0 x 0 0 0 `x 0x xx xxxx xxxx xxxx x xx xxxx x xx xxxx

.. 2: 0 x x x 0 x 0 0 0 `x 0x xx xxxx xxxx xxxx x xx xxxx x xx xxxx

.. 3: 0 x x x 0 x 0 0 0 `x 0x xx xxxx xxxx xxxx x xx xxxx x xx xxxx

.. 4: 0 x x x 0 x 0 0 0 `x 0x xx xxxx xxxx xxxx x xx xxxx x xx xxxx

.. 5: 0 x x x 0 x 0 0 0 `x 0x xx xxxx xxxx xxxx x xx xxxx x xx xxxx

.. 6: 0 x x x 0 x 0 0 0 `x 0x xx xxxx xxxx xxxx x xx xxxx x xx xxxx

.. 7: 0 x x x 0 x 0 0 0 `x 0x xx xxxx xxxx xxxx x xx xxxx x xx xxxx

0 xxxx xxxx `x xx

0 xxxx xxxx `x xx

0 xxxx xxxx `x xx

0 xxxx xx x

0 xxxx xxxx xxxx `x x xx xxxx

0 xxxx xx 0 0 xx xxxx

0 xxxx xxxx xxxx `x x xx xxxx

0 xxxx xx 0 0 xx xxxx

0: 0 xxxx x0 0x 00

1: 0 xxxx x1 0x 00
Electrical & Computer Engineering, University of Maryland at College Park 20



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

and

s; we
nd a
of the
1”
te
the
MOVI is replaced by the assembler with a LUI+ADDI pair) into the alternate fetch buffers (C
D). The program counter is incremented by two.

During cycle 3, the first two instructions issue address-generate operations to the ALU
enqueue the second two instructions; and we fetch the third pair of instructions: an ADDI a
JALR. The program counter is incremented by two. During the enqueue phase, the targets
two instructions (LW -> r2, LUI -> r7) are set appropriately: the SC field for r2 will become “1
and the SC field for r7 will become “03”, indicating that LUI’s result will be on an ALU bus. No
that thev/src fields in each of the two issuing LW instructions will become invalid and refer to

H. 0: 1 0 0 0 0 0 1 0 0 m5 01 00 0000 0011 0000 1 00 0000 1 xx 0000

.. 1: 1 0 0 0 0 0 1 1 0 m5 03 00 0000 0010 0000 1 00 0000 1 00 0001

Figure 6: EXECUTION CYCLE 3

HT IQ V D O B M A I S X OP rT EX RSLT ARG0 ARG1 v sc ARG2 v sc PC

RN RVAL v sc

on FB v INST PC

PC:

INSTRUCTION
MEMORY

on FB v INST PC

REGISTER

FETCH
BUFFERS:

INSTRUCTION

FILE:

QUEUE:

DATA
MEMORY

v PC

BRANCH
BACK:

S ADDR DATA OP ID v ARG0 ARG1 ARG2 OP B ID PC v ARG0 ARG1 ARG2 OP B ID PC

v RSLT ID EX v ID PC v RSLT ID EX v ID PC

ALU-0
BRANCHMISS

ALU-0
RESULT BUS

ALU-1
BRANCHMISS

ALU-1
RESULT BUS

ALU-0
INPUT REGISTERS:

ALU-1
INPUT REGISTERS:

MEMORY
QUEUE:

v RSLT ID EX

MEMORY
RESULT BUS

B# v RSLT ID rT EX

COMMIT
BUSES:

0004

0: 0000 1 00

1: 0000 0 10

2: 0000 1 xx

3: 0000 0 11

4: 0000 1 xx

5: 0000 1 xx

6: 0000 1 xx

7: 0000 1 xx

0 0004 -- A: 0 a411 0000

-- B: 0 ac10 0001

-> C: 1 aa12 0002

-> D: 1 7c00 0003

.T 2: 0 x x x 0 x 0 2 0 `x 0x xx xxxx xxxx xxxx x xx xxxx x xx xxxx

.. 3: 0 x x x 0 x 0 2 0 `x 0x xx xxxx xxxx xxxx x xx xxxx x xx xxxx

.. 4: 0 x x x 0 x 0 2 0 `x 0x xx xxxx xxxx xxxx x xx xxxx x xx xxxx

.. 5: 0 x x x 0 x 0 2 0 `x 0x xx xxxx xxxx xxxx x xx xxxx x xx xxxx

.. 6: 0 x x x 0 x 0 2 0 `x 0x xx xxxx xxxx xxxx x xx xxxx x xx xxxx

.. 7: 0 x x x 0 x 0 2 0 `x 0x xx xxxx xxxx xxxx x xx xxxx x xx xxxx

0: 0 0000 10 01 00

1: 0 0000 11 03 00

0 xxxx xxxx `x xx

0 xxxx xxxx `x xx

0 xxxx xxxx `x xx

0 xxxx xx x

0 xxxx xxxx xxxx `x x xx xxxx

0 xxxx xx 0 0 xx xxxx

0 xxxx xxxx xxxx `x x xx xxxx

0 xxxx xx 0 0 xx xxxx
Electrical & Computer Engineering, University of Maryland at College Park 21



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

f an

ALU-
sue to
LUI.
urce
of the
LW instruction itself. This allows the Tomasulo-style logic to be used to forward the results o
address-generation back into the memory instruction’s IQ entry.

During cycle 4, the results of the two address-generate operations are placed on the two
result busses and feed their results to IQ slots 0 and 1. The second pair of instructions is
ALUs: the LW in slot 2 sends an address-generate operation and the LUI in slot 3 sends a
The third pair of instructions (ADDI+JALR) is enqueued in slots 4 and 5 and sets register-so
values appropriately: because both target r7, the SC field for r7 becomes the ID of the latter
two instructions—that of the JALR, which is enqueued into slot 5.

Figure 7: EXECUTION CYCLE 4

HT IQ V D O B M A I S X OP rT EX RSLT ARG0 ARG1 v sc ARG2 v sc PC

RN RVAL v sc

on FB v INST PC

PC:

INSTRUCTION
MEMORY

on FB v INST PC

REGISTER

FETCH
BUFFERS:

INSTRUCTION

FILE:

QUEUE:

DATA
MEMORY

v PC

BRANCH
BACK:

S ADDR DATA OP ID v ARG0 ARG1 ARG2 OP B ID PC v ARG0 ARG1 ARG2 OP B ID PC

v RSLT ID EX v ID PC v RSLT ID EX v ID PC

ALU-0
BRANCHMISS

ALU-0
RESULT BUS

ALU-1
BRANCHMISS

ALU-1
RESULT BUS

ALU-0
INPUT REGISTERS:

ALU-1
INPUT REGISTERS:

MEMORY
QUEUE:

v RSLT ID EX

MEMORY
RESULT BUS

B# v RSLT ID rT EX

COMMIT
BUSES:

0006

0: 0000 1 00

1: 0000 0 10

2: 0000 0 12

3: 0000 0 11

4: 0000 1 xx

5: 0000 1 xx

6: 0000 1 xx

7: 0000 0 03

0 0006 -> A: 1 3f8c 0004

-> B: 1 ff80 0005

-- C: 0 aa12 0002

-- D: 0 7c00 0003

H. 0: 1 0 1 0 0 0 0 0 0 m5 01 00 0000 0011 0000 0 00 0000 1 xx 0000

.. 1: 1 0 1 0 0 0 0 0 0 m5 03 00 0000 0010 0000 0 01 0000 1 00 0001

.. 2: 1 0 0 0 0 0 1 0 0 m5 02 00 0000 0012 0000 1 xx 0000 1 xx 0002

.. 3: 1 0 0 0 0 0 1 1 0 a3 07 00 0000 0000 0000 1 00 0000 1 00 0003

.T 4: 0 x x x 0 x 0 2 0 `x 0x xx xxxx xxxx xxxx x xx xxxx x xx xxxx

.. 5: 0 x x x 0 x 0 2 0 `x 0x xx xxxx xxxx xxxx x xx xxxx x xx xxxx

.. 6: 0 x x x 0 x 0 2 0 `x 0x xx xxxx xxxx xxxx x xx xxxx x xx xxxx

.. 7: 0 x x x 0 x 0 2 0 `x 0x xx xxxx xxxx xxxx x xx xxxx x xx xxxx

0 xxxx xxxx `x xx

0 xxxx xxxx `x xx

0 xxxx xxxx `x xx

0 xxxx xx x

1 0011 0000 0011 a0 0 00 0000

1 0011 00 0 0 00 0012

1 0010 0000 0010 a0 0 01 0001

1 0010 01 0 0 01 0012

0: 0 0000 10 01 00

1: 0 0000 11 03 00
Electrical & Computer Engineering, University of Maryland at College Park 22



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

“M”
to the

I will
its

LU-1
ed
During cycle 5, the target addresses for the first two LW instructions are compared, and the
bits for each are set appropriately, indicating whether the memory operation can be issued
memory queue. The LW/LUI pair is executed and the results placed on the ALU busses (LU
be marked “done” in its IQ entry). The ADDI instruction in IQ slot 4 can issue, even though
register operand is tagged invalid in the IQ slot, because its source ID matches that on A
result bus. There are two IQ slots open; two instructions are enqueued. Two more are fetch

Figure 8: EXECUTION CYCLE 5

HT IQ V D O B M A I S X OP rT EX RSLT ARG0 ARG1 v sc ARG2 v sc PC

RN RVAL v sc

on FB v INST PC

PC:

INSTRUCTION
MEMORY

on FB v INST PC

REGISTER

FETCH
BUFFERS:

INSTRUCTION

FILE:

QUEUE:

DATA
MEMORY

v PC

BRANCH
BACK:

S ADDR DATA OP ID v ARG0 ARG1 ARG2 OP B ID PC v ARG0 ARG1 ARG2 OP B ID PC

v RSLT ID EX v ID PC v RSLT ID EX v ID PC

ALU-0
BRANCHMISS

ALU-0
RESULT BUS

ALU-1
BRANCHMISS

ALU-1
RESULT BUS

ALU-0
INPUT REGISTERS:

ALU-1
INPUT REGISTERS:

MEMORY
QUEUE:

v RSLT ID EX

MEMORY
RESULT BUS

B# v RSLT ID rT EX

COMMIT
BUSES:

0008

0: 0000 1 00

1: 0000 0 10

2: 0000 0 12

3: 0000 0 11

4: 0000 1 xx

5: 0000 1 xx

6: 0000 1 xx

7: 0000 0 05

0 000a -- A: 0 3f8c 0004

-- B: 0 ff80 0005

-> C: 1 2dff 0006

-> D: 1 cc02 0007

H. 0: 1 0 0 0 0 1 0 0 0 m5 01 00 0011 0011 0011 1 00 0000 1 xx 0000

.. 1: 1 0 0 0 0 1 0 0 0 m5 03 00 0010 0010 0010 1 01 0000 1 00 0001

.. 2: 1 0 1 0 0 0 0 0 0 m5 02 00 0000 0012 0000 0 02 0000 1 xx 0002

.. 3: 1 0 1 0 0 0 0 0 0 a3 07 00 0000 0000 0000 1 00 0000 1 00 0003

.. 4: 1 0 0 0 0 0 1 0 0 a1 07 00 0000 000c 0000 0 03 0000 1 xx 0004

.. 5: 1 0 0 0 0 0 0 1 0 b7 07 00 0000 0000 0000 0 04 0005 1 00 0005

.T 6: 0 x x x 0 x 0 1 0 `x 0x xx xxxx xxxx xxxx x xx xxxx x xx xxxx

.. 7: 0 x x x 0 x 0 1 0 `x 0x xx xxxx xxxx xxxx x xx xxxx x xx xxxx

0 xxxx xxxx `x xx

0 xxxx xxxx `x xx

0 xxxx xxxx `x xx

0 xxxx xx x

1 0012 0000 0012 a0 0 02 0002

1 0012 02 0 0 02 0015

1 0000 0000 0000 a3 0 03 0003

1 0000 03 0 0 03 0004

0: 0 0011 10 01 00

1: 0 0010 11 03 00
Electrical & Computer Engineering, University of Maryland at College Park 23



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

the
o an
is full
, this
two
-taken
d

During cycle 6, the LW instruction in iq0 is issued to the memory queue (its M tag is 1). On
following cycle, we will see this reflected in the memq’s entries. the JALR in iq5 is issued t
ALU because its register operand is available on ALU-0 result bus. The instruction queue
(no entries marked “invalid”), and therefore the enqueue mechanism is stalled. Normally
would not stall the fetch mechanism (later cycles will illustrate this) ... normally, another
instructions would be fetched into the alternate fetch buffers. However, there is a predicted
branch in fetchbuf B (the backwards branchbeq r0,r0, loop), so the program counter is redirecte
during this cycle. Fetch will commence down the predicted path on the following cycle.

Figure 9: EXECUTION CYCLE 6

HT IQ V D O B M A I S X OP rT EX RSLT ARG0 ARG1 v sc ARG2 v sc PC

RN RVAL v sc

on FB v INST PC

PC:

INSTRUCTION
MEMORY

on FB v INST PC

REGISTER

FETCH
BUFFERS:

INSTRUCTION

FILE:

QUEUE:

DATA
MEMORY

v PC

BRANCH
BACK:

S ADDR DATA OP ID v ARG0 ARG1 ARG2 OP B ID PC v ARG0 ARG1 ARG2 OP B ID PC

v RSLT ID EX v ID PC v RSLT ID EX v ID PC

ALU-0
BRANCHMISS

ALU-0
RESULT BUS

ALU-1
BRANCHMISS

ALU-1
RESULT BUS

ALU-0
INPUT REGISTERS:

ALU-1
INPUT REGISTERS:

MEMORY
QUEUE:

v RSLT ID EX

MEMORY
RESULT BUS

B# v RSLT ID rT EX

COMMIT
BUSES:

0 xxxx xxxx `x xx

0 xxxx xxxx `x xx

0 xxxx xxxx `x xx

0 xxxx xx x

1 000c 0000 000c a0 0 04 0004

1 000c 04 0 0 04 0011

0 0000 0000 0000 a3 0 03 0003

0 0000 03 0 0 03 0004

0: 0 0011 10 01 00

1: 0 0010 11 03 00

HT 0: 1 0 0 0 1 1 0 0 0 m5 01 00 0011 0011 0011 1 00 0000 1 xx 0000

.. 1: 1 0 0 0 0 1 0 0 0 m5 03 00 0010 0010 0010 1 01 0000 1 00 0001

.. 2: 1 0 0 0 0 1 0 0 0 m5 02 00 0012 0012 0012 1 02 0000 1 xx 0002

.. 3: 1 1 0 0 0 1 0 0 0 a3 07 00 0000 0000 0000 1 00 0000 1 00 0003

.. 4: 1 0 1 0 0 0 0 0 0 a1 07 00 0000 000c 0000 1 03 0000 1 xx 0004

.. 5: 1 0 0 0 0 0 1 0 0 b7 07 00 0000 0000 0000 0 04 0005 1 00 0005

.. 6: 1 0 0 0 0 0 0 1 0 a1 03 00 0000 ffff 0000 0 11 0000 1 05 0006

.. 7: 1 0 0 0 0 0 0 1 0 b6 00 00 0000 0002 0000 1 00 0000 0 06 0007

000a

0: 0000 1 00

1: 0000 0 10

2: 0000 0 12

3: 0000 0 06

4: 0000 1 xx

5: 0000 1 xx

6: 0000 1 xx

7: 0000 0 05

1 0002 -> A: 1 3201 0008
-> B: 1 c078 0009

-- C: 0 2dff 0006

-- D: 0 cc02 0007
Electrical & Computer Engineering, University of Maryland at College Park 24



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

were
vious
the

and it
oth
ected,
“1” in
1).
During cycle 7, the second LW instruction is issued to the memory queue (note that both
“ready” on the previous cycle, but we can only issue one per cycle). The “status” of the pre
memory operation is “1” which indicates that it is in mid-request (once the status is “3”
operation is complete). The JALR issued on the previous cycle is on the ALU-0 result bus,
has set the BRANCHMISS valid-bit high, indicating a change in control flow. This stalls b
fetch and enqueue and invalidates the fetchbuf entries. The program counter will be redir
using the valid produced by the JALR instruction. Instructions to be stomped on are tagged
the “X” column: iq6 and iq7—those following the JALR. Those not stomped can still issue (iq

Figure 10: EXECUTION CYCLE 7

HT IQ V D O B M A I S X OP rT EX RSLT ARG0 ARG1 v sc ARG2 v sc PC

RN RVAL v sc

on FB v INST PC

PC:

INSTRUCTION
MEMORY

on FB v INST PC

REGISTER

FETCH
BUFFERS:

INSTRUCTION

FILE:

QUEUE:

DATA
MEMORY

v PC

BRANCH
BACK:

S ADDR DATA OP ID v ARG0 ARG1 ARG2 OP B ID PC v ARG0 ARG1 ARG2 OP B ID PC

v RSLT ID EX v ID PC v RSLT ID EX v ID PC

ALU-0
BRANCHMISS

ALU-0
RESULT BUS

ALU-1
BRANCHMISS

ALU-1
RESULT BUS

ALU-0
INPUT REGISTERS:

ALU-1
INPUT REGISTERS:

MEMORY
QUEUE:

v RSLT ID EX

MEMORY
RESULT BUS

B# v RSLT ID rT EX

COMMIT
BUSES:

0002

0: 0000 1 00

1: 0000 0 10

2: 0000 0 12

3: 0000 0 06

4: 0000 1 xx

5: 0000 1 xx

6: 0000 1 xx

7: 0000 0 05

1 0002 -> A: 1 3201 0008
-> B: 1 c078 0009

-- C: 0 2dff 0006
-- D: 0 cc02 0007

HT 0: 1 0 1 0 0 1 0 0 0 m5 01 00 0011 0011 0011 1 00 0000 1 xx 0000

.. 1: 1 0 0 0 1 1 0 0 0 m5 03 00 0010 0010 0010 1 01 0000 1 00 0001

.. 2: 1 0 0 0 0 1 0 0 0 m5 02 00 0012 0012 0012 1 02 0000 1 xx 0002

.. 3: 1 1 0 0 0 1 0 0 0 a3 07 00 0000 0000 0000 1 00 0000 1 00 0003

.. 4: 1 1 0 0 0 1 0 0 0 a1 07 00 000c 000c 0000 1 03 0000 1 xx 0004

.. 5: 1 0 1 0 0 0 0 0 0 b7 07 00 0000 0000 000c 1 04 0005 1 00 0005

.. 6: 1 0 0 0 0 0 0 0 1 a1 03 00 0000 ffff 0000 0 11 0000 1 05 0006

.. 7: 1 0 0 0 0 0 0 0 1 b6 00 00 0000 0002 0000 1 00 0000 0 06 0007

1 0011 0000 m5 10

0 xxxx xxxx `x xx

0 xxxx xxxx `x xx

0 xxxx xx x

1 0000 000c 0000 b7 0 05 0005

1 0006 05 0 1 05 000c

0 0000 0000 0000 a3 0 03 0003

0 0000 03 0 0 03 0004

0: 0 0011 10 01 00

1: 0 0010 11 03 00
Electrical & Computer Engineering, University of Maryland at College Park 25



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

n the
e been
, but
s been
Most
cycle
the
ory
At the beginning of cycle 8, we see that the stomped instructions are now marked “invalid” i
instruction queue, and the tail pointer has been reset appropriately. The fetch buffers hav
marked “invalid.” Several instructions (iq3, iq4, and iq5) are “done” and thus ready to commit
are held up by the three LW instructions at the head of the queue. The program counter ha
rest appropriately (it has the value of the branchmiss status from the previous cycle).
importantly, the contents of the register file reflect the correct machine state: on the previous
the addi instruction in iq6 targeted r3, which had “06” as its source. Now, register r3 has
previous source of r3 listed: the LW in iq1. During this cycle, another LW is issued to the mem

Figure 11: EXECUTION CYCLE 8

HT IQ V D O B M A I S X OP rT EX RSLT ARG0 ARG1 v sc ARG2 v sc PC

RN RVAL v sc

on FB v INST PC

PC:

INSTRUCTION
MEMORY

on FB v INST PC

REGISTER

FETCH
BUFFERS:

INSTRUCTION

FILE:

QUEUE:

DATA
MEMORY

v PC

BRANCH
BACK:

S ADDR DATA OP ID v ARG0 ARG1 ARG2 OP B ID PC v ARG0 ARG1 ARG2 OP B ID PC

v RSLT ID EX v ID PC v RSLT ID EX v ID PC

ALU-0
BRANCHMISS

ALU-0
RESULT BUS

ALU-1
BRANCHMISS

ALU-1
RESULT BUS

ALU-0
INPUT REGISTERS:

ALU-1
INPUT REGISTERS:

MEMORY
QUEUE:

v RSLT ID EX

MEMORY
RESULT BUS

B# v RSLT ID rT EX

COMMIT
BUSES:

000c

0: 0000 1 00

1: 0000 0 10

2: 0000 0 12

3: 0000 0 11

4: 0000 1 xx

5: 0000 1 xx

6: 0000 1 xx

7: 0000 0 05

0 0002 -> A: 0 3201 0008
-> B: 0 c078 0009

-- C: 0 2dff 0006
-- D: 0 cc02 0007

H. 0: 1 0 1 0 0 1 0 0 0 m5 01 00 0011 0011 0011 1 00 0000 1 xx 0000

.. 1: 1 0 1 0 0 1 0 0 0 m5 03 00 0010 0010 0010 1 01 0000 1 00 0001

.. 2: 1 0 0 0 1 1 0 0 0 m5 02 00 0012 0012 0012 1 02 0000 1 xx 0002

.. 3: 1 1 0 0 0 1 0 0 0 a3 07 00 0000 0000 0000 1 00 0000 1 00 0003

.. 4: 1 1 0 0 0 1 0 0 0 a1 07 00 000c 000c 0000 1 03 0000 1 xx 0004

.. 5: 1 1 0 0 0 1 0 0 0 b7 07 00 0006 0000 000c 1 04 0005 1 00 0005

.T 6: 0 0 0 0 0 0 0 0 0 a1 03 00 0000 ffff 0000 0 11 0000 1 05 0006

.. 7: 0 0 0 0 0 0 0 0 0 b6 00 00 0000 0002 0000 1 00 0000 0 06 0007

0: 0 0011 10 01 00

1: 0 0010 11 03 00

2 0011 0000 m5 10

1 0010 0000 m5 11

0 xxxx xxxx `x xx

0 xxxx xx x

0 0000 000c 0000 b7 0 05 0005

0 0006 05 0 0 05 000c

0 0000 0000 0000 a3 0 03 0003

0 0000 03 0 0 03 0004
Electrical & Computer Engineering, University of Maryland at College Park 26



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

ueued

e; its
ched
d
mory
queue. Two instructions are fetched. Very little else happens because most of the enq
instructions are done.

During cycle 9, the first of the three LW instructions becomes ready in the memory queu
result will be sent on the memory result bus on the following cycle. The two instructions fet
on the previous cycle (the NAND and ADDI at the top of thesub subroutine) are enqueued an
the next two subroutine instructions (ADD and JALR) are fetched. The states of the me
queue entries are incremented by one.

Figure 12: EXECUTION CYCLE 9

HT IQ V D O B M A I S X OP rT EX RSLT ARG0 ARG1 v sc ARG2 v sc PC

RN RVAL v sc

on FB v INST PC

PC:

INSTRUCTION
MEMORY

on FB v INST PC

REGISTER

FETCH
BUFFERS:

INSTRUCTION

FILE:

QUEUE:

DATA
MEMORY

v PC

BRANCH
BACK:

S ADDR DATA OP ID v ARG0 ARG1 ARG2 OP B ID PC v ARG0 ARG1 ARG2 OP B ID PC

v RSLT ID EX v ID PC v RSLT ID EX v ID PC

ALU-0
BRANCHMISS

ALU-0
RESULT BUS

ALU-1
BRANCHMISS

ALU-1
RESULT BUS

ALU-0
INPUT REGISTERS:

ALU-1
INPUT REGISTERS:

MEMORY
QUEUE:

v RSLT ID EX

MEMORY
RESULT BUS

B# v RSLT ID rT EX

COMMIT
BUSES:

000e

0: 0000 1 00

1: 0000 0 10

2: 0000 0 12

3: 0000 0 11

4: 0000 1 xx

5: 0000 1 xx

6: 0000 1 xx

7: 0000 0 05

0 000f -> A: 1 4902 000c

-> B: 1 2901 000d

-- C: 0 2dff 0006

-- D: 0 cc02 0007

H. 0: 1 0 1 0 0 1 0 0 0 m5 01 00 0011 0011 0011 1 00 0000 1 xx 0000

.. 1: 1 0 1 0 0 1 0 0 0 m5 03 00 0010 0010 0010 1 01 0000 1 00 0001

.. 2: 1 0 1 0 0 1 0 0 0 m5 02 00 0012 0012 0012 1 02 0000 1 xx 0002

.. 3: 1 1 0 0 0 1 0 0 0 a3 07 00 0000 0000 0000 1 00 0000 1 00 0003

.T 6: 0 0 0 0 0 0 0 0 0 a1 03 00 0000 ffff 0000 0 11 0000 1 05 0006

.. 4: 1 1 0 0 0 1 0 0 0 a1 07 00 000c 000c 0000 1 03 0000 1 xx 0004

.. 5: 1 1 0 0 0 1 0 0 0 b7 07 00 0006 0000 000c 1 04 0005 1 00 0005

.. 7: 0 0 0 0 0 0 0 0 0 b6 00 00 0000 0002 0000 1 00 0000 0 06 0007

0: 0 0011 10 01 00

1: 0 0010 11 03 00

3 0011 0000 m5 10

2 0010 0000 m5 11

1 0012 0000 m5 12

0 xxxx xx x

0 0000 000c 0000 b7 0 05 0005

0 0006 05 0 0 05 000c

0 0000 0000 0000 a3 0 03 0003

0 0000 03 0 0 03 0004
Electrical & Computer Engineering, University of Maryland at College Park 27



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

esult
s are
e LW
eue
e fetch

ched
utine
During cycle 10, the result of the first LW instruction is seen on the memory result bus. THe r
is latched at the end of the cycle, when the instruction will be tagged “done”. No instruction
issued to functional units because the two potential instructions are dependent on th
instruction in iq2 (its result will become available in two cycles). Because the IQ is full, enqu
is stalled. Because there are no predicted-taken branches (i.e. backwards branches) in th
buffers, instruction fetch is not stalled; the two instructions following the subroutine are fet
(they are actually data, but they will be discarded when the JALR at the end of the subro
takes effect).

Figure 13: EXECUTION CYCLE 10

HT IQ V D O B M A I S X OP rT EX RSLT ARG0 ARG1 v sc ARG2 v sc PC

RN RVAL v sc

on FB v INST PC

PC:

INSTRUCTION
MEMORY

on FB v INST PC

REGISTER

FETCH
BUFFERS:

INSTRUCTION

FILE:

QUEUE:

DATA
MEMORY

v PC

BRANCH
BACK:

S ADDR DATA OP ID v ARG0 ARG1 ARG2 OP B ID PC v ARG0 ARG1 ARG2 OP B ID PC

v RSLT ID EX v ID PC v RSLT ID EX v ID PC

ALU-0
BRANCHMISS

ALU-0
RESULT BUS

ALU-1
BRANCHMISS

ALU-1
RESULT BUS

ALU-0
INPUT REGISTERS:

ALU-1
INPUT REGISTERS:

MEMORY
QUEUE:

v RSLT ID EX

MEMORY
RESULT BUS

B# v RSLT ID rT EX

COMMIT
BUSES:

0: 0 0011 10 01 00

1: 0 0010 11 03 00

0 0011 0000 m5 10

3 0010 0000 m5 11

2 0012 0000 m5 12

1 23de 10 0

0 0000 000c 0000 b7 0 05 0005

0 0006 05 0 0 05 000c

0 0000 0000 0000 a3 0 03 0003

0 0000 03 0 0 03 0004

HT 0: 1 0 1 0 0 1 0 0 0 m5 01 00 0011 0011 0011 1 00 0000 1 xx 0000

.. 1: 1 0 1 0 0 1 0 0 0 m5 03 00 0010 0010 0010 1 01 0000 1 00 0001

.. 2: 1 0 1 0 0 1 0 0 0 m5 02 00 0012 0012 0012 1 02 0000 1 xx 0002

.. 3: 1 1 0 0 0 1 0 0 0 a3 07 00 0000 0000 0000 1 00 0000 1 00 0003

.. 4: 1 1 0 0 0 1 0 0 0 a1 07 00 000c 000c 0000 1 03 0000 1 xx 0004

.. 5: 1 1 0 0 0 1 0 0 0 b7 07 00 0006 0000 000c 1 04 0005 1 00 0005

.. 6: 1 0 0 0 0 0 0 0 0 a2 02 00 0000 0002 0000 0 12 0000 0 12 000c

.. 7: 1 0 0 0 0 0 0 0 0 a1 02 00 0000 0001 0000 0 06 0000 1 00 000d

0 0010 -- A: 0 4902 000c

-- B: 0 2901 000d

-> C: 1 0482 000e

-> D: 1 e380 000f

0: 0000 1 00

1: 0000 0 10

2: 0000 0 07

3: 0000 0 11

4: 0000 1 xx

5: 0000 1 xx

6: 0000 1 xx

7: 0000 0 05

0010
Electrical & Computer Engineering, University of Maryland at College Park 28



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

ing
t for
talled
h is
During cycle 11, the first LW instruction commits its result to the register file. On the follow
cycle, its IQ slot will be tagged as invalid, marking it available for a new instruction. The resul
the second LW instruction is seen on the memory result bus. Instructions in iq6 and iq7 are s
waiting on the third LW instruction. Enqueue is stalled waiting for an available IQ entry. Fetc
stalled waiting for an available fetch buffer.

Figure 14: EXECUTION CYCLE 11

HT IQ V D O B M A I S X OP rT EX RSLT ARG0 ARG1 v sc ARG2 v sc PC

RN RVAL v sc

on FB v INST PC

PC:

INSTRUCTION
MEMORY

on FB v INST PC

REGISTER

FETCH
BUFFERS:

INSTRUCTION

FILE:

QUEUE:

DATA
MEMORY

v PC

BRANCH
BACK:

S ADDR DATA OP ID v ARG0 ARG1 ARG2 OP B ID PC v ARG0 ARG1 ARG2 OP B ID PC

v RSLT ID EX v ID PC v RSLT ID EX v ID PC

ALU-0
BRANCHMISS

ALU-0
RESULT BUS

ALU-1
BRANCHMISS

ALU-1
RESULT BUS

ALU-0
INPUT REGISTERS:

ALU-1
INPUT REGISTERS:

MEMORY
QUEUE:

v RSLT ID EX

MEMORY
RESULT BUS

B# v RSLT ID rT EX

COMMIT
BUSES:

0: 1 23de 10 01 00

1: 0 0010 11 03 00

0 0011 0000 m5 10

0 0010 0000 m5 11

3 0012 0000 m5 12

1 0001 11 0

0 0000 000c 0000 b7 0 05 0005

0 0006 05 0 0 05 000c

0 0000 0000 0000 a3 0 03 0003

0 0000 03 0 0 03 0004

HT 0: 1 1 1 0 0 1 0 0 0 m5 01 00 23de 0011 0011 1 00 0000 1 xx 0000

.. 1: 1 0 1 0 0 1 0 0 0 m5 03 00 0010 0010 0010 1 01 0000 1 00 0001

.. 2: 1 0 1 0 0 1 0 0 0 m5 02 00 0012 0012 0012 1 02 0000 1 xx 0002

.. 3: 1 1 0 0 0 1 0 0 0 a3 07 00 0000 0000 0000 1 00 0000 1 00 0003

.. 4: 1 1 0 0 0 1 0 0 0 a1 07 00 000c 000c 0000 1 03 0000 1 xx 0004

.. 5: 1 1 0 0 0 1 0 0 0 b7 07 00 0006 0000 000c 1 04 0005 1 00 0005

.. 6: 1 0 0 0 0 0 0 0 0 a2 02 00 0000 0002 0000 0 12 0000 0 12 000c

.. 7: 1 0 0 0 0 0 0 0 0 a1 02 00 0000 0001 0000 0 06 0000 1 00 000d

0 0010 -- A: 1 0001 0010

-- B: 1 23de 0011

-> C: 1 0482 000e

-> D: 1 e380 000f

0012

0: 0000 1 00

1: 0000 0 10

2: 0000 0 07

3: 0000 0 11

4: 0000 1 xx

5: 0000 1 xx

6: 0000 1 xx

7: 0000 0 05
Electrical & Computer Engineering, University of Maryland at College Park 29



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

tion
on in
will
still
During cycle 12, the second LW instruction commits. The slot opened up by the LW instruc
(slot iq0) is the enqueue-target for one of the instructions in the fetchbufs (the ADD instructi
fetchbuf C). The result for the third LW instruction is seen on the memory result bus. This
enable the waiting instructions to issue to functional units on the following cycle. Fetch is
stalled because there are no empty fetch buffers.

Figure 15: EXECUTION CYCLE 12

HT IQ V D O B M A I S X OP rT EX RSLT ARG0 ARG1 v sc ARG2 v sc PC

RN RVAL v sc

on FB v INST PC

PC:

INSTRUCTION
MEMORY

on FB v INST PC

REGISTER

FETCH
BUFFERS:

INSTRUCTION

FILE:

QUEUE:

DATA
MEMORY

v PC

BRANCH
BACK:

S ADDR DATA OP ID v ARG0 ARG1 ARG2 OP B ID PC v ARG0 ARG1 ARG2 OP B ID PC

v RSLT ID EX v ID PC v RSLT ID EX v ID PC

ALU-0
BRANCHMISS

ALU-0
RESULT BUS

ALU-1
BRANCHMISS

ALU-1
RESULT BUS

ALU-0
INPUT REGISTERS:

ALU-1
INPUT REGISTERS:

MEMORY
QUEUE:

v RSLT ID EX

MEMORY
RESULT BUS

B# v RSLT ID rT EX

COMMIT
BUSES:

0: 1 0001 11 03 00

1: 0 0012 12 02 00

0 0011 0000 m5 10

0 0010 0000 m5 11

0 0012 0000 m5 12

1 02e1 12 0

0 0000 000c 0000 b7 0 05 0005

0 0006 05 0 0 05 000c

0 0000 0000 0000 a3 0 03 0003

0 0000 03 0 0 03 0004

0012

.T 0: 0 1 1 0 0 1 0 0 0 m5 01 00 23de 0011 0011 1 00 0000 1 xx 0000

H. 1: 1 1 1 0 0 1 0 0 0 m5 03 00 0001 0010 0010 1 01 0000 1 00 0001

.. 2: 1 0 1 0 0 1 0 0 0 m5 02 00 0012 0012 0012 1 02 0000 1 xx 0002

.. 3: 1 1 0 0 0 1 0 0 0 a3 07 00 0000 0000 0000 1 00 0000 1 00 0003

.. 4: 1 1 0 0 0 1 0 0 0 a1 07 00 000c 000c 0000 1 03 0000 1 xx 0004

.. 5: 1 1 0 0 0 1 0 0 0 b7 07 00 0006 0000 000c 1 04 0005 1 00 0005

.. 6: 1 0 0 0 0 0 0 0 0 a2 02 00 0000 0002 0000 0 12 0000 0 12 000c

.. 7: 1 0 0 0 0 0 0 0 0 a1 02 00 0000 0001 0000 0 06 0000 1 00 000d

0 0010 -- A: 1 0001 0010

-- B: 1 23de 0011

-> C: 1 0482 000e

-> D: 1 e380 000f

0: 0000 1 00

1: 23de 1 10

2: 0000 0 07

3: 0000 0 11

4: 0000 1 xx

5: 0000 1 xx

6: 0000 1 xx

7: 0000 0 05
Electrical & Computer Engineering, University of Maryland at College Park 30



Tech. Report UMD-SCA-2000-02 ENEE 446: Digital Computer Design — An Out-of-Order RiSC-16

eue.
IQ
by
During cycle 13, two instructions commit, opening up two more slots in the instruction qu
The NAND instruction in iq6 that was waiting on the LW in iq2 issues to a functional unit. The
slot opened up by the LW instruction in iq1, which committed on the previous cycle, is filled
the instruction in fetchbuf D: the JALR instruction that marks the end of the subroutine.

Figure 16: EXECUTION CYCLE 13

HT IQ V D O B M A I S X OP rT EX RSLT ARG0 ARG1 v sc ARG2 v sc PC

RN RVAL v sc

on FB v INST PC

PC:

INSTRUCTION
MEMORY

on FB v INST PC

REGISTER

FETCH
BUFFERS:

INSTRUCTION

FILE:

QUEUE:

DATA
MEMORY

v PC

BRANCH
BACK:

S ADDR DATA OP ID v ARG0 ARG1 ARG2 OP B ID PC v ARG0 ARG1 ARG2 OP B ID PC

v RSLT ID EX v ID PC v RSLT ID EX v ID PC

ALU-0
BRANCHMISS

ALU-0
RESULT BUS

ALU-1
BRANCHMISS

ALU-1
RESULT BUS

ALU-0
INPUT REGISTERS:

ALU-1
INPUT REGISTERS:

MEMORY
QUEUE:

v RSLT ID EX

MEMORY
RESULT BUS

B# v RSLT ID rT EX

COMMIT
BUSES:

0: 1 02e1 12 02 00

1: 1 0000 03 07 00

0 0011 0000 m5 10

0 0010 0000 m5 11

0 0012 0000 m5 12

0 02e1 12 0

0 0000 000c 0000 b7 0 05 0005

0 0006 05 0 0 05 000c

0 0000 0000 0000 a3 0 03 0003

0 0000 03 0 0 03 0004

.. 0: 1 0 0 0 0 0 0 1 0 a0 01 00 0000 0002 23de 1 10 0000 0 07 000e

.T 1: 0 1 1 0 0 1 0 2 0 m5 03 00 0001 0010 0010 1 01 0000 1 00 0001

.. 4: 1 1 0 0 0 1 0 0 0 a1 07 00 000c 000c 0000 1 03 0000 1 xx 0004

H. 2: 1 1 1 0 0 1 0 0 0 m5 02 00 02e1 0012 0012 1 02 0000 1 xx 0002

.. 3: 1 1 0 0 0 1 0 0 0 a3 07 00 0000 0000 0000 1 00 0000 1 00 0003

.. 5: 1 1 0 0 0 1 0 0 0 b7 07 00 0006 0000 000c 1 04 0005 1 00 0005

.. 6: 1 0 0 0 0 0 1 0 0 a2 02 00 0000 0002 02e1 1 12 02e1 1 12 000c

.. 7: 1 0 0 0 0 0 0 1 0 a1 02 00 0000 0001 0000 0 06 0000 1 00 000d

0 0010 -- A: 1 0001 0010

-- B: 1 23de 0011

-> C: 0 0482 000e

-> D: 1 e380 000f

0012

0: 0000 1 00

1: 23de 0 00

2: 0000 0 07

3: 0001 1 11

4: 0000 1 xx

5: 0000 1 xx

6: 0000 1 xx

7: 0000 0 05
Electrical & Computer Engineering, University of Maryland at College Park 31


	1. RiSC-16 Instruction Set
	2. Background
	Tomasulo’s Algorithm
	Reorder Buffer
	Register Update Unit

	3. RiSC-16 Out-of-Order Implementation: Overview
	Figure 1:�� Overview of the pipeline organization
	Fetch Phase
	Enqueue Phase
	Figure 2:�� Example enqueue of two instructions
	Figure 3:�� FIelds of an instruction-queue entry

	Data-Incoming Phase
	Issue Phase
	Execute Phase
	Commit Phase

	4. Mechanisms that Require a Little More Detail
	Instruction Scheduling
	Figure 4:�� Instruction scheduling logic

	Memory Operations
	Branch Mispredictions
	Precise Interrupt Handling

	5. Pipeline Timing
	ALU Instructions
	Memory Instructions
	Branches and Jumps

	6. Example Operation
	Figure 5:�� EXECUTION CYCLE 2
	Figure 6:�� EXECUTION CYCLE 3
	Figure 7:�� EXECUTION CYCLE 4
	Figure 8:�� EXECUTION CYCLE 5
	Figure 9:�� EXECUTION CYCLE 6
	Figure 10:�� EXECUTION CYCLE 7
	Figure 11:�� EXECUTION CYCLE 8
	Figure 12:�� EXECUTION CYCLE 9
	Figure 13:�� EXECUTION CYCLE 10
	Figure 14:�� EXECUTION CYCLE 11
	Figure 15:�� EXECUTION CYCLE 12
	Figure 16:�� EXECUTION CYCLE 13

	An Out-of-Order RiSC-16
	Tomasulo + Reorder Buffer = Interruptible Out-of-Order
	ENEE 446: Digital Computer Design, Fall 2000 Prof. Bruce Jacob, http://www.ece.umd.edu/~blj/


