
1

ABSTRACT

This paper presents the modeling of embedded systems with
SimBed, an execution-driven simulation testbed that measures the
execution behavior and power consumption of embedded applica-
tions and RTOSs by executing them on an accurate architectural
model of a microcontroller with simulated real-time stimuli. We
briefly describe the simulation environment and present a study
that compares three RTOSs: µC/OS-II, a popular public-domain
embedded real-time operating system; Echidna, a sophisticated,
industrial-strength (commercial) RTOS; and NOS, a bare-bones
multi-rate task scheduler reminiscent of typical “roll-your-own”
RTOSs found in many commercial embedded systems. The micro-
controller simulated in this study is the Motorola M-CORE proces-
sor: a low-power, 32-bit CPU core with 16-bit instructions,
running at 20MHz.

1. INTRODUCTION

With embedded systems moving toward faster and smaller proces-
sors and systems on a chip, it becomes increasingly difficult to
accurately quantify embedded-system behavior. Probing a piece of
silicon, or accurately measuring timing values down to a nanosec-
ond or less becomes more expensive and more difficult—in some
cases impossible [21, 28]. This poses a serious obstacle for future
systems design.

There are three recent trends relevant to this observation. First is
the increasing popularity of hardware/software cosimulation or
codesign [17, 1]. As opposed to developing the hardware and soft-
ware for a system separately, the hardware/software codesign
methodology realizes the advantages of designing the two together.
Doing so provides benefits in performance, reliability, and time to
market, due to the observation that when hardware and software
designers communicate during the design process, there is less
chance of problems arising due to ignorance [23].

Another trend is the use of real-time operating systems [20, 8,
35]. Their benefits are well known: they provide numerous facili-

ties including cooperative and preemptive multitasking, support
for both periodic and aperiodic tasks, semaphores, inter-process
communication, etc. In doing so they can dramatically reduce the
time to design, develop, and test a product [13, 2, 14].

The third trend is the rapidly growing demand for computing
devices that are both compute-intensive and battery operated, for
example PDAs, wearable computers, and laptops [4, 26].

These three trends meet at a simple, clear conclusion: It is pru-
dent to have a simulation-based experimental environment for real-
time embedded systems, but, if the model is to be truly useful for
developing modern embedded systems, it must be accurate enough
to run unmodified real-time operating systems, and it must accu-
rately characterize the energy consumption of the system. High-
level language modeling of applications and their operating sys-
tems has been performed by the SimOS group [27], and there has
been a large number of recent studies modeling the power con-
sumption of microprocessors and applications [32, 18, 24, 15, 16,
11, 5, 36, 31, 25, 10], but this is the first study of which we are
aware that performs both.

1.1. SimBed

Our group has developed SimBed, a high-level-language model of
an embedded hardware system that runs unmodified real-time
operating systems (i.e., the binary that runs on the simulator is the
same binary that runs on real hardware). In this study, we present a
processor model written in C that emulates the M-CORE micro-
controller, a low-power, 32-bit CPU core with 16-bit instructions
[33, 34]. All devices, interrupts, and interrupt handlers used by the
operating systems and applications are accurately simulated. The
model has been verified as cycle-accurate to within 100 cycles per
million compared to actual hardware (the difference is due to a
handful of variable-latency hardware instructions such as multipli-
cation that, for simplicity, we model as having constant latencies).

We have also instrumented the processor simulator to measure
energy consumption, using existing instruction-based techniques
[31]. We have verified the simulator’s output to measurements of
actual hardware, and our results are within 10–15% of real mea-
surements. This level of accuracy for modeling power at the pro-
cessor level is about where current research stands (e.g. [5, 31]).

An interesting side note is that some of SimBed’s measurements
represent quantities that cannot be obtained via traditional means
(e.g., probes and logic analyzers) on current M-CORE chips with-
out perturbing the observed system, as M-CORE offerings all use
on-chip memories. For example, the division of time and energy
into kernel, user, idle, and interrupt-handler components could be

The Performance and Energy Consumption of Three
Embedded Real-Time Operating Systems

Kathleen Baynes, Chris Collins, Eric Fiterman, Brinda Ganesh,
Paul Kohout, Christine Smit, Tiebing Zhang, and Bruce Jacob

Dept. of Electrical & Computer Engineering
University of Maryland at College Park

College Park, MD 20742
http://www.ece.umd.edu/~blj/embedded/

{ktbaynes,chriscol,ericf,brinda,pkohout,csmit,zhangtb,blj}@eng.umd.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES'01, November 16-17, 2001, Atlanta, Georgia, USA.
Copyright 2001 ACM 1-58113-399-5/01/0011...$5.00.

2

obtained by either instrumenting code or using off-chip memory
and a logic analyzer, but both schemes would change the system’s
execution time and energy consumption.

1.2. Experiments & Results

This paper presents an experimental study using SimBed in which
the performance and energy consumption of three different RTOSs
are compared: a public-domain preemptive multitasking kernel, an
industrial-strength cooperative multitasking kernel, and a bare-
bones task scheduler (which represents the limiting case of a light-
weight cooperatively-scheduled RTOS).

The benchmarks executed on each operating system are periodic
apps, for which an absolute deadline is less important than relative
deadline—i.e. these are applications for which a 500Hz task
requires its i+1th invocation to run exactly 2ms after its ith invoca-
tion and could care less whether the very first invocation started at
time t0 or t0 plus some small delta, provided no dependence rela-
tions are violated. These applications have slightly different goals
than traditional real-time applications; for instance if the RTOS
schedules a 500Hz task to run every 2ms, but the task is executed
exactly 1ms “late” on every invocation, then—as far as the outside
world is concerned—it is a 500MHz task that is on-time every
invocation. Thus, the measure of an RTOS’s effectiveness in exe-
cuting these applications can be determined by external observa-
tion; one does not need to know the contents of the scheduler’s
data structures to determine whether a periodic application is
invoked on-time or not.

Our performance measurements yield both predictable and sur-
prising results. Predictably, as system load is increased, the RTOSs
hit their job deadlines consistently until a critical system load is
reached, beyond which point the RTOSs miss deadlines with
increasing frequency and by increasing amounts of time. The sur-
prising results include situations where the industrial RTOSs miss
deadlines with predictable regularity and with probability 1, even
when the system is under light load. In general, to ensure on-time
task invocations in the face of unpredictable events (e.g., external
device interrupts), an RTOS must maintain significant CPU head-
room: 10–20% idle CPU cycles is not too much.

The energy-consumption measurements demonstrate a trade-off
that the more complex RTOSs seem to have taken: while the bare-
bones scheduler has the lowest energy consumption, that consump-
tion scales with the workload. The more complex RTOSs have a
higher initial energy consumption, but this consumption does not
increase as quickly as the user-level computational load. There-
fore, the energy consumption and CPU requirements of these sys-
tems are likely to be much more predictable than a simpler RTOS.

2. METHODOLOGY

This study characterizes the real-time behavior and power-con-
sumption break-down of two industrial-strength RTOSs and a sim-
ple scheduler:

uC/OS-II: A preemptive multitasking RTOS that is in the
public domain [19]. It is ROMable and scalable (only
modules that are needed are compiled into the executable).
Execution times of all kernel functions and services are
deterministic. Despite its small size (1700 lines of code), it
offers such services as mailboxes, queues, semaphores, time-
related functions, etc. It is chosen to represent sophisticated
preemptive multitasking RTOSs with footprints small enough
for microcontroller systems.

ECHIDNA: A cooperative multitasking RTOS based on
Chimera [29] that swaps Chimera’s POSIX-like threads in the

microkernel for port-based objects [30]; it supports
reconfigurable component-based software for
microcontrollers and digital signal processors [9]. This is
chosen to be representative of sophisticated dynamic-priority
cooperative RTOSs with footprints small enough for
microcontroller systems (Echidna has a footprint of ~6KB).

NOS: A bare-bones, fixed-priority, multi-rate executive based
on descriptions of “roll-your-own” RTOSs given by
embedded-systems designers in industry [12]. Though it is
just a task scheduler and not a full OS, we refer to it in this
paper as an “RTOS” for convenience. It is chosen to represent
the attainable energy and performance limit of non-
preemptive RTOSs.

On each of these, we execute several application kernels that
exploit multitasking to the extent possible in the given OS (µC/OS
provides preemptive multitasking, Echidna provides cooperative
multitasking, and NOS schedules work on function boundaries)
and use for all data transfer whatever inter-process communication
mechanism is supplied by the RTOS. Within a task, we stress the
RTOS’s communication mechanism by having different indepen-
dently scheduled jobs read the input and write the output; i.e., the
same job does not perform both reads and writes to the I/O system.
Therefore, the minimum workload for any application is a task of
two independently scheduled jobs (terminology from Liu [22]).

The application kernels include raw IPC (both periodic and ape-
riodic), up-sampling, down-sampling, and a 128-tap FIR filter.
Background load in the form of aperiodic interrupt-driven tasks
and a control loop performing administrative work makes the sys-
tem less predictable and thus makes life more difficult for each
scheduler.

Control Loop: This task runs in the background at a period of
32ms to simulate the background load that many embedded
systems have running while they are performing other tasks,
such as a cell phone that has a task that runs periodically to
refresh its LCD display. This control loop performs several
memory lookups with an index that is randomly generated.

Aperiodic IPC: An I/O interrupt is generated by hardware, and
a high-priority user-level job is scheduled in response that
writes to the I/O space. This is the mechanism used to
determine system response time under load. The interrupt
inter-arrival times obey a geometric distribution: the emulator
generates an interrupt every 100µs with a probability of 0.01,
giving an average of 100 interrupts a second.

Note that the same application code is executed on all three operat-
ing systems (with minor RTOS-specific modifications). The exper-
iments keep track of real-time jitter, response-time delay, and total
CPU energy consumption divided into user, kernel, handler, sema-
phore, and idle components.

Jitter: Jitter is measured by keeping track of inter-arrival times
of periodic output. For example, if a task is scheduled to
generate an output every ten milliseconds, its average inter-
arrival time should be ten milliseconds. Any variation in the
inter-arrival time represents output that fails to arrive on time.

Note that this differs slightly from the traditional definition
because if a scheduler happens to execute a task consistently
late, it will nonetheless appear on-time to the external world.

Delay: Delay is measured by keeping track of the time between
actions in aperiodic stimulus-response pairs. In the aperiodic-
IPC workload, we keep track of the delay between the I/O
interrupt that signals the input and the time that the
application output is received at the I/O system (as opposed to

3

the time that the handler is invoked or the moment that the
output to I/O system is initiated). This represents the response
time of the system as a function of system load.

Note that this differs significantly from traditional definitions
of interrupt latency, which characterize a system by the time
interval from raising the interrupt to executing the handler for
that interrupt. Moreover, traditional measurements of delay
give a single number, whereas we present a distribution.

Energy consumption: Energy consumed is tagged with the
currently executing instruction’s program counter, indicating
what function in the system is being executed. The execution
time for NOS and Echidna is divided into user, kernel,
handler, semaphore, and idle components. The execution time
for µC/OS is divided more finely, including idle, user, event
handling, semaphore management, time management, context
switching, interrupt handling, interrupt disabling and
enabling, thread scheduling, task management
(creation/deletion/etc.) and initialization.

More detail on the MCORE processor, SimBed’s internals, appli-
cations, and RTOS models can be found elsewhere [37, 6, 3].

3. EXPERIMENTAL RESULTS
3.1. Real-Time Jitter

Our jitter data is shown in probability density graphs centered on
the expected period. Data points at positive x-coordinates indicate
late execution; data at negative x-coordinates indicate early execu-
tion. To keep the graphs readable, only non-zero y-values are
shown. Note that the probability density graphs do not smooth out
as more data is collected; for example, there are only minimal dif-
ferences in graphs generated from 50 million data points as com-

pared to graphs generated from 1 billion data points. When multiple
tasks are executing simultaneously, each writes to a different I/O
port, enabling the distinction between tasks, and each task contrib-
utes equally to the data in the graphs.

Figure 1 presents the jitter measurements for the up-sampler
running at 2:1, 4:1, and 8:1 ratios; the results are fairly representa-
tive of all benchmarks. The graphs show spikes of data points, usu-
ally centered at zero (indicating an on-time arrival of output I/O),
with any number of data points on either side of the spike. The
height of a data point indicates the probability of seeing that time
delta—for instance, Figure 1(a) shows that when Echidna is run-
ning one task (consisting of an 8ms job and a 4ms job), output
arrives on-time roughly 90% of the time; 5% of the time output is a
little late (off by about 0.1 millisecond), and 5% of the time it is a
little early. With two tasks, output is on-time 45% of the time; 28%
of the output is a little early, and 22% is a little late, and a small
amount of output is early/late by thee-quarters of a millisecond.
With four tasks, no output is exactly on time; roughly 50% of the
output is a little early and 50% is a little late. A very small percent-
age is early/late by 0.2 ms. With eight tasks running, there is a
clear bimodal distribution that shows roughly symmetric data
peaks centered at about 0.2ms early and 0.2ms late.

An interesting result seen in the graphs is that, even at light
workloads (e.g. tasks running with 8ms periods, also seen in other
benchmarks with tasks running at 16ms), Echidna and µC/OS exe-
cute a number of jobs too late—and usually an equal number of
tasks too early. Moreover, the number of early/late job invocations
does not seem to scale with the workload (for example, µC/OS at
task periods of 8/4ms cannot get more than 50% of the tasks to
execute on-time, but more than 50% do execute on-time when the
second task is running four times as often (compare Figures 1(g)
and 1(i)). This behavior is caused in both RTOSs by task self-inter-
ference. This is specific to tasks with jobs that run with different

-6 -4 -2 0 2 4 6

Expected Arrival Time in ms from Target Arrival Time

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
ro

b
a

b
ili

ty
 o

f A
rr

iv
a

l T
im

e

-6 -4 -2 0 2 4 6

Expected Arrival Time in ms from Target Arrival Time

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
ro

b
a

b
ili

ty
 o

f A
rr

iv
a

l T
im

e

-6 -4 -2 0 2 4 6

Expected Arrival Time in ms from Target Arrival Time

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
ro

b
a

b
ili

ty
 o

f A
rr

iv
a

l T
im

e

Figure 1: JITTER probability density graphs for UP. The x-axis represents time deltas between successive I/O output events as they differ from the expected
period. Negative numbers mean a task ran early, and positive numbers mean a task has run late, in relation to the last task run. The y-axis indicates the
probability of each delta. The legend shows the symbols used to represent system load of 1, 2, 4, and 8 simultaneous tasks.

(m) 1/0.5ms period (n) 500/250µs period (o) 250/125µs period

1 task
2 tasks
4 tasks
8 tasks

NO S NOSNOS

(a) 8/4ms period (b) 8/2ms period (c) 8/1ms period (d) 4/2ms period (e) 4/1ms period

-6 -4 -2 0 2 4 6

Expected Arrival Time in ms from Target Arrival Time

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
P

ro
b

a
b

ili
ty

 o
f

A
rr

iv
a

l T
im

e

-6 -4 -2 0 2 4 6

Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6

Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6

Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6

Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6

Expected Arrival Time in ms from Target Arrival Time

(f) 2/1ms period

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
ro

b
a
b
ili

ty
 o

f
A

rr
iv

a
l T

im
e

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

-6 -4 -2 0 2 4 6
Expected Arrival Time in ms from Target Arrival Time

(g) 8/4ms period (h) 8/2ms period (i) 8/1ms period (j) 4/2ms period (k) 4/1ms period (l) 2/1ms period

uC/OS-II uC/OS-IIuC/OS-II uC/OS-II uC/OS-IIuC/OS-II

Echidna EchidnaEchidnaEchidna EchidnaEchidna

4

periods; when the periods are not relatively prime, job invocations
coincide in time every Nth invocation. If the RTOS fails to distrib-
ute the workload appropriately, the system experiences a traffic
jam every Nth invocation, resulting in late executions for many of
the jobs. Thus, we see that the larger the ratio between the two
periods, the fewer instances of traffic jams, even if the total work-
load increases. This also means that when different jobs periodi-
cally all want the same invocation time, the traffic jams will
happen with probability 1, even if the workload is light.

This type of early/late behavior is not confined to self-interfer-
ence, however. We saw the behavior in all applications studied; the
presence of background load that occasionally (but not always)
intrudes on execution time also causes regular traffic jams. In
Echidna, the background control loop is a periodic task with period
32ms. The control loop is executed every other job invocation
when run against 16ms tasks, every fourth job invocation when run
against the 8ms tasks, etc. Whenever the control loop runs, it
pushes the actual invocation times of other jobs out slightly so that
they run late and then early on the next invocation. Therefore,
16ms tasks are upset by the disturbance more than 1ms tasks, even
though they represent a higher system workload.

The disturbance in µC/OS is the aperiodic IPC interrupt that
happens on average every 10ms. Because µC/OS is preemptive,
the task invoked by the interrupt handler has a higher priority than
any of the periodic application tasks, so it preempts application
threads whenever it runs. 16ms tasks are upset most by this (in
other benchmarks not shown), because the interrupt displaces a
user thread on roughly every other job invocation (thus, only 50%
of the job invocations are on-time). As the user threads execute

more frequently, the interrupt preempts user threads with decreas-
ing frequency, and we see that more job invocations are on-time,
even though the system load has increased.

The systems would clearly benefit from better load distribution.
For example, if the future job invocations were scheduled relative
to the actual job invocation time rather than the intended invoca-
tion time, the system would naturally spread out the jobs, and it
would only have late invocations during the first round of invoca-
tions. Neither µC/OS nor Echidna manages to spread the tasks out
in time. In contrast, NOS schedules tasks relative to their actual
invocation time. Thus even if a task runs late the first time, the fol-
lowing invocations will be on time. However, this is not a panacea:
as the workload increases this relative scheduling cannot prevent
late invocations, as NOS is non-preemptive, and therefore low-pri-
ority tasks can delay high-priority tasks.

3.2. Response-Time Delay

Our delay numbers represent the time between an Aperiodic-IPC
interrupt and the moment that the I/O system sees the correspond-
ing output from the user-level task invoked as a result of the inter-
rupt. Thus, the delay measures the response time of the system in
terms of when the first physical reaction to an external stimulus
could take place.

The µC/OS-II kernel handles interrupts preemptively; both
Echidna and NOS use polling. The difference between Echidna
and NOS is that Echidna supports only periodic tasks and will not
spawn a new task as a result of an interrupt; this must be done by a
periodic application task. Therefore, our Echidna interrupt-handler

Figure 2: DELAY probability density graphs for IPC and FIR. The x-axis represents time between an interrupt being generated by an I/O device and the
corresponding output to an I/O port of the responding thread. The y-axis indicates the probability of each delta. All measurements are for configurations with both
types of background load (32Hz periodic control loop and aperiodic interrupt-driven IPC)—these delay measurements are for the interrupt-driven IPC that is the
background load. Results range from little foreground load (1 IPC task) to heavy foreground load (4 FIR tasks). Note that the y-axis scale is different for the uC/OS
graphs and that the x-axis scales are different in figures (c) and (i).

0 0.5 1 1.5 2
Delay (ms)

0.00

0.20

0.40

0.60

P
ro

ba
bi

lit
y

o
f R

e
sp

on
se

 T
im

e

0 0.5 1 1.5 2
Delay (ms)

0.00

0.20

0.40

0.60

P
ro

ba
bi

lit
y

o
f R

e
sp

on
se

 T
im

e

0 0.5 1 1.5 2
Delay (ms)

0.00

0.20

0.40

0.60

P
ro

b
ab

ili
ty

 o
f

R
es

po
ns

e
T

im
e

0 0.5 1 1.5 2
Delay (ms)

0.00

0.20

0.40

0.60

P
ro

b
ab

ili
ty

 o
f

R
es

po
ns

e
T

im
e

(a) ECHIDNA: 1 P-IPC task, 16ms period (b) ECHIDNA: 8 P-IPC tasks, 1ms period

(g) NOS: 1 P-IPC task, 16ms period (h) NOS: 8 P-IPC tasks, 1ms period

(c) ECHIDNA: 4 FIR tasks, 1ms period

(i) NOS: 4 FIR tasks, 1ms period

0 2 4 6
Delay (ms)

0.00

0.20

0.40

0.60

P
ro

ba
bi

lit
y

o
f R

e
sp

on
se

 T
im

e

0 2 4 6
Delay (ms)

0.00

0.20

0.40

0.60

P
ro

ba
bi

lit
y

o
f R

e
sp

on
se

 T
im

e

0 0.5 1 1.5 2
Delay (ms)

0.00

0.20

0.40

0.60

0.80

1.00

P
ro

b
ab

ili
ty

 o
f

R
es

po
ns

e
T

im
e

0 0.5 1 1.5 2
Delay (ms)

0.00

0.20

0.40

0.60

0.80

1.00

P
ro

b
ab

ili
ty

 o
f

R
es

po
ns

e
T

im
e

0 0.5 1 1.5 2
Delay (ms)

0.00

0.20

0.40

0.60

0.80

1.00

P
ro

b
ab

ili
ty

 o
f

R
es

po
ns

e
T

im
e

(d) uC/OS-II: 1 P-IPC task, 16ms period (e) uC/OS-II: 8 P-IPC tasks, 1ms period (f) uC/OS-II: 4 FIR tasks, 1ms period

5

task is periodic with the shortest period supported by Echidna,
1ms, and it simply checks for IPC-related interrupts whenever it
executes, sending output to an I/O port whenever it finds that such
an interrupt has happened. NOS treats interrupts as tasks with a
fixed priority (LOW). When an interrupt occurs NOS first finishes
the currently active task, if any, and then looks at the ready queue.
If there are no ready tasks with a higher priority than the interrupt
handler, NOS services the interrupt. Thus, at light workloads an
interrupt gets serviced almost at once. With a heavier workload,
this response time can vary from very low to very high depending
on what the instantaneous workload is when the interrupt occurs.

The delay times are shown in Figure 2. These represent the
range of CPU load from very light (1 IPC task, 16ms period) to
very heavy (4 FIR tasks, 1ms period). As expected of a coopera-
tively multitasked RTOS, Echidna’s response time is more-or-less
evenly distributed over a 1ms interval, until the system becomes
heavily loaded, at which point the execution time of the periodic
interrupt-handler task can vary by a significant amount (up to sev-
eral milliseconds). The NOS system has the simplest interrupt han-
dling mechanism of all, and its response time is extremely good
when the system is lightly loaded—in fact, even faster than the
preemptive µC/OS-II kernel, because its cooperatively scheduled
nature means that no state needs to be saved on task switch. As the
system load increases, the average response time of NOS
increases, and it obeys a geometric distribution corresponding to
the average execution time of the application’s jobs.

The preemptive µC/OS-II kernel handles interrupts with relative
precision. Yet the figures shows that its overhead varies slightly
from benchmark to benchmark. The variation is due to the RTOS’s
implementation of preemptive scheduling: A task is made ready
when the current task blocks or a hardware timer tick occurs. Both
events cause the RTOS to scan the Task Control Block (TCB) list
and mark all appropriate tasks ready to run. The ready task with
the highest priority is then made the current running task. This is a
common design for preemptive schedulers, but because on a task
switch the scheduler traverses the entire TCB list, the time to com-
plete a task switch is dependent on the number of tasks. This
explains the observed behavior that the response time scales with
the number of tasks in the configuration.

In addition, Figure 2(d) shows that µC/OS occasionally takes
longer to service interrupts than average, even though the interrupt

handler has the highest priority in the system. The instances of
longer interrupt-service times are due to the interrupt arriving dur-
ing a moment when interrupts are disabled, thereby delaying the
invocation of the handler. Non-intuitively, this seems to happen
most often when the CPU is in low use. The idle task in µC/OS
increments a protected counter that determines system load. The
RTOS treats the update of this counter as a critical section of code
and protects it by disabling interrupts before the increment and
restoring interrupts after. Therefore, when the system is largely
idle, the chance of an external interrupt arriving during a critical
section is actually higher than when the system is busy.

3.3. Energy Consumption

To measure energy consumption, we ran each configuration for the
same number of application iterations. The results are shown in
Figure 3, which shows the energy overhead one pays for an RTOS.
This closely mirrors the overhead one pays in terms of execution
time as well [7]. Results are only shown for FIR, the application
with the greatest overhead (~233µs per job invocation).

The results show that RTOS kernel overhead is reasonable,
given the benefits provided by that RTOS. The use of the NOS
scheduler increases energy consumption by less than a factor of
two, and the Echidna and µC/OS-II kernels increase energy con-
sumption by less than a factor of three. Several behaviors can be
seen in the data, from the obvious to the not-so-obvious:

• Interrupt handling overhead is significant in systems that are
interrupt-driven and insignificant in the cooperative systems.
The latter makes sense, because in the polled systems, no state
is saved or restored during interrupt handling. The former is
interesting; the µC/OS-II kernel demonstrates that in heavily
loaded systems, it can use interrupts to off-load some of
Echidna’s overhead.

• The user components for the more sophisticated RTOSs
(Echidna and µC/OS-II) tend to be less than the user
components for NOS. This simply represents the trade-off of
being able to move some of the functionality from the
application into the kernel. However, in less computationally
intensive benchmarks, the user components are higher than
NOS—low computational requirements in the application can

NOS ECHIDNA uC/OS-II

1 2 4 8 1 2 4 8 1 2 4 8
Number of Independent Tasks

Figure 3: ENERGY CONSUMPTION graphs for FIR. The x-axis represents increasing workloads, as a result of increasing the number of executing tasks or.
The y-axis represents the total CPU energy consumption and breakdowns for how much energy is consumed by executing kernel code, executing user
application code, handling interrupts, performing semaphore handling, and sitting idle. “X” at the top of a bar represents a configuration that missed a significant
portion of deadlines. Note that “idle” includes both time sleeping as well as some loop overhead in the main loop and parts of the timekeeping code for Echidna.

(a) Task period: 8ms (b) Task period: 4ms (c) Task period: 2ms (d) Task period: 1ms

NOS ECHIDNA uC/OS-II

1 2 4 8 1 2 4 8 1 2 4 8
Number of Independent Tasks

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

E
n
e
rg

y
(m

J)

NOS ECHIDNA uC/OS-II

1 2 4 8 1 2 4 8 1 2 4 8
Number of Independent Tasks

NOS ECHIDNA uC/OS-II

1 2 4 8 1 2 4 8 1 2 4 8
Number of Independent Tasks

Kernel

Application

Interrupts

Idle

Semaphore

Legend for NOS
and Echidna:

Legend for uC/OS-II:

XXXXXX
X

XX X X

Initialize
Task
Scheduling

Int Dis/Enable
Interrupt

Context Switch
Time
Semaphore

Event
Application

Idle

6

expose commonly used (but otherwise overshadowed) RTOS
mechanisms as significant consumers of power, such as the
clock-tick handler in µC/OS-II that runs every clock tick
interrupt and wakes up sleeping threads when it determines that
their periods have expired.

• The kernel overhead in NOS scales with the application
workload, while the kernel components in the other RTOSs are
more constant. The more sophisticated RTOSs do a better job
of ensuring that all computations are deterministic in the time
and energy it takes to perform them, which gives more
predictable system behavior. The cost is obviously a higher
starting point for energy consumption.

• It is cheaper to run tasks faster than to add tasks to the system.
For instance, compare NOS:8 in Figure 3(a), NOS:4 in Figure
3(b), NOS:2 in Figure 3(c), and NOS:1 in Figure 3(d), which
represent different trade-offs of speed and number of tasks. The
user components is the same for these configurations, as the
configurations all represent the same amount of work: 2000 job
invocations per second, broken down as (respectively) 16 jobs,
each scheduled every 8ms; 8 jobs, each scheduled every 4ms; 4
jobs, each scheduled every 2ms; and 2 jobs, each scheduled every
millisecond. Though the work is the same, the kernel energy is
not; this is seen in other configurations as well as in NOS. The
reason is simple: the RTOSs maintain queues of tasks, typically
as linked lists, which grow with the number of tasks.

Please note that “idle” time is both time spent sleeping and time in
certain inactive loops. Just because Echidna still has idle time after
the system is overloaded with work does not mean that any more
useful work can be done.

4. FUTURE WORK

This paper characterizes the performance and power consumption
of a few sample applications, running with various realistic
RTOSs, on a low-power embedded processor. Future papers will be
focused on updating, validating, and extending this research.

Because the Motorola MCORE processor is being phased out, a
more modern processor is being modeled - the Texas Instruments
TMS320C6201. This common DSP appears in several modern
products, including devices for wireless communication, broad-
band communication, audio/video processing, encryption, and
medical equipment. Not only is this processor newer, it is also
quite different. The processor is a high performance 8-way VLIW
32-bit fixed-point DSP, operating at up to 1600 MIPS. Its perfor-
mance is much higher, but so is its power consumption.

The sample applications used in this paper are realistic, however,
more widely used benchmarks would allow the results to be related
to existing research more easily. Therefore, standard benchmarks,
including the MediaBench benchmark suite [38], are being uti-
lized.

Some preliminary results have been obtained - specifically the jit-
ter and delay measurements of the DSP running the GSM encode
benchmark, from the MediaBench suite. The timescale for these
measurements are in the microsecond range, because of the faster
processor. The data points for the jitter measurements have been
placed into 10 microsecond wide groups, for readability.

These results will significantly contribute to the research of RTOS
and microprocessor performance and power optimization.

Figure 4: DELAY probability density graphs for GSM on TMS320C6201. The x-axis represents time between an interrupt being generated by an I/O device
and the corresponding output to an I/O port of the responding thread. The y-axis indicates the probability of each delta. All measurements are for configurations
with both types of background load (32Hz periodic control loop and aperiodic interrupt-driven IPC)—these delay measurements are for the interrupt-driven IPC
that is the background load.

(a) uC/OS-II: 1 GSM task, 40ms period (b) uC/OS-II: 4 GSM tasks, 10ms period

0 10

Delay(us)

0.00

0.20

0.40

0.60

0.80

1.00

P
ro

b
a

b
ili

ty
 o

f
R

e
s
p

o
n

s
e

 T
im

e

0 10

Delay(us)

0.00

0.20

0.40

0.60

0.80

1.00

P
ro

b
a

b
ili

ty
 o

f
R

e
s
p

o
n

s
e

 T
im

e

5 5

Figure 5: JITTER probability density graphs for GSM on TMS320C6201. The x-axis represents time deltas in microseconds between successive I/O output
events as they differ from the expected period. Negative numbers mean a task ran early, and positive numbers mean a task has run late, in relation to the last
task run. The y-axis indicates the probability of each delta. The legend shows the symbols used to represent system load of 1, 2, 4, and 8 simultaneous tasks.

1 task
2 tasks
4 tasks
8 tasks

(a) 10ms period (b) 20ms period (c) 40ms period

-80 -40 0 40 80

Expected Arrival Time in us from Target Arrival Time

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty
 o

f
A

rr
iv

a
l T

im
e

-80 -40 0 40 80

Expected Arrival Time in us from Target Arrival Time

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty
 o

f
A

rr
iv

a
l T

im
e

-80 -40 0 40 80

Expected Arrival Time in us from Target Arrival Time

0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty
 o

f
A

rr
iv

a
l T

im
e

7

5. CONCLUSION

SimBed is a simulation-based environment for evaluating the per-
formance and energy consumption of embedded real-time operat-
ing systems. The simulator’s performance measurement is accurate
to within 100 cycles per million compared to identical software
executing on reference hardware. Its energy measurement is accu-
rate to within 10–15%.

We presented a study of preemptive and non-preemptive real-
time operating systems, focusing on two industrial-strength
RTOSs. We compared these to a raw scheduler that should repre-
sent the realistic performance and energy-consumption limit for
non-preemptive RTOSs, since it has none of the overhead that
would be found in a real RTOS, such as support for semaphores,
message-passing, etc. Among other things, we find an interesting
trade-off that the more complex RTOSs seem to have taken: while
the bare-bones scheduler has the lowest energy consumption, that
consumption scales with the workload. The more complex RTOSs
have a higher initial energy consumption, but this consumption
does not increase quickly as the user-level computational load
grows. Therefore, the energy consumption and CPU requirements
of these systems are likely to be much more predictable than a sim-
pler RTOS.

ACKNOWLEDGMENTS

The work of Kathleen Baynes and Christine Smit was supported in
part by NSF’s sponsorship of undergraduate research through grant
NSF-9912218. The work of Chris Collins, Brinda Ganesh, Paul
Kohout, and Tiebing Zhang was supported in part by NSF grant
EIA-9806645 and NSF grant EIA-0000439. The work of Bruce
Jacob was supported in part by NSF CAREER Award CCR-
9983618, NSF grant EIA-9806645, NSF grant EIA-0000439,
DOD award AFOSR-F496200110374, and by Compaq and IBM.

REFERENCES
[1] A. Allara, C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto.

“System-level performance estimation strategy for SW and HW.” In
International Conference on Computer Design, Austin TX, October
1998.

[2] S. R. Ball. Embedded Microprocessor Systems: Real World Design.
Newnes, Butterworth–Heinemann, Boston MA, 1996.

[3] K. Baynes, C. Collins, E. Fiterman, C. Smit, T. Zhang, and B. Jacob.
“The performance and energy consumption of embedded real-time
operating systems.” Tech. Rep. UMD-SCA-TR-2000-04, University
of Maryland Systems & Computer Architecture Group, November
2000.

[4] L. Benini and G. D. Micheli. “System-level power optimization:
Techniques and tools.” In International Symposium on Low Power
Electronics and Design, August 1999, pp. 288–293.

[5] D. Brooks, V. Tiwari, and M. Martonosi. “Wattch: A framework for
architectural-level power analysis and optimizations.” In Proc. 27th
Annual International Symposium on Computer Architecture (IS-
CA’00), Vancouver BC, June 2000, pp. 83–94.

[6] C. M. Collins. “An evaluation of embedded system behavior using
full-system software emulation.” Master’s Thesis, University of
Maryland at College Park, May 2000.

[7] R. P. Dick, G. Lakshminarayana, A. Raghunathan, and N. K. Jha.
“Power analysis of embedded operating systems.” In 37th Design Au-
tomation Conference, Los Angeles CA, June 2000, pp. 312–315.

[8] C. Ellis. “The case for higher-level power management.” In Proceed-
ings of the Seventh Workshop on Hot Topics in Operating Systems,
1999.

[9] Embedded Research Solutions. Embedded Zone — Publications.
http://www.embedded-zone.com, 2000.

[10] J. Flinn and M. Satyanarayanan. “Powerscope: A tool for profiling the
energy usage of mobile applications.” In Workshop on Mobile Com-
puting Systems and Applications (WMCSA), February 1999, pp. 2–10.

[11] R. Fromm, S. Perissakis, N. Cardwell, C. Kozyrakis, B. McGaughy,
D. Patterson, T. Anderson, and K. Yelick. “The energy efficiency of
IRAM architectures.” In Proc. 24th Annual International Symposium
on Computer Architecture (ISCA’97), Denver CO, June 1997, pp.
327–337.

[12] J. Ganssle. “Conspiracy theory, take 2.” The Embedded Muse newslet-
ter, no. 47, March 22, 2000.

[13] J. G. Ganssle. “An OS in a can.” Embedded Systems Programming,
January 1994.

[14] J. G. Ganssle. “The challenges of real-time programming.” Embedded
Systems Programming, vol. 11, no. 7, pp. 20–26, July 1997.

[15] R. Gonzalez and M. Horowitz. “Energy dissipation in general purpose
microprocessors.” IEEE Journal of Solid-State Circuits, vol. 31, no. 9,
pp. 1277–1284, September 1996.

[16] J. K. M. Gupta and W. Mangione-Smith. “The Filter Cache: An ener-
gy efficient memory structure.” In Proc. 30th Annual International
Symposium on Microarchitecture (MICRO’97), Research Triangle
Park NC, December 1997, pp. 184–193.

[17] J. Hennessy and M. Heinrich. “Hardware/software codesign of pro-
cessors: Concepts and examples.” In Hardware/Software Co-Design,
G. De Micheli and M. Sami, Eds. 1996, pp. 29–44, Kluwer Academic
Publishers.

[18] M. Horowitz, T. Indermaur, and R. Gonzalez. “Low-power digital de-
sign.” In IEEE Symposium on Low Power Electronics, October 1994,
pp. 8–11.

[19] J. J. Labrosse. MicroC/OS-II: The Real-Time Kernel. R&D Books
(Miller Freeman, Inc.), Lawrence KS, 1999.

[20] Y. Li, M. Potkonjak, and W. Wolf. “Real-time operating systems for
embedded computing.” In International Conference on Computer De-
sign, Austin TX, October 1997.

[21] C. Liema, F. Nacabal, C. Valderrama, P. Paulin, and A. Jerraya. “Sys-
tem-on-a-chip cosimulation and compilation.” IEEE Design and Test
of Computers, vol. 14, no. 2, pp. 16–25, April–June 1997.

[22] J. W. S. Liu. Real-Time Systems. Prentice Hall, Upper Saddle River
NJ, 2000.

[23] D. Roundtable. “Hardware-software codesign.” IEEE Design and
Test of Computers, vol. 14, no. 1, pp. 75–83, January–March 1997.

[24] K. Roy and M. C. Johnson. “Software design for low power.” In Soft-
ware Design for Low Power, Nato ASI series, August 1996.

[25] J. Russell and M. Jacome. “Software power estimation and optimiza-
tion for high performance, 32-bit embedded processors.” In Interna-
tional Conference on Computer Design, Austin TX, October 1998.

[26] J. Scott, L. Lee, A. Chin, J. Arends, and B. Moyer. “Designing the
m.core m3 cpu architecture.” In International Conference on Comput-
er Design, Austin TX, October 1999.

[27] SimOS. SimOS: The Complete Machine Simulator. Stanford Univer-
sity, http://simos.stanford.edu/, 1998.

[28] M. J. Smith. Application-Specific Integrated Circuits. Addison-Wes-
ley, Reading MA, 1997.

[29] D. B. Stewart, D. E. Schmitz, and P. K. Khosla. “The Chimera II real-
time operating system for advanced sensor-based applications.” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 22, no. 6, pp.
1282–1295, November/December 1992.

[30] D. B. Stewart, R. A. Volpe, and P. K. Khosla. “Design of dynamically
reconfigurable real-time software using port-based objects.” IEEE
Transactions on Software Engineering, vol. 23, no. 12, pp. 759–776,
December 1997.

[31] V. Tiwari and M. T.-C. Lee. “Power analysis of a 32-bit embedded
microcontroller.” VLSI Design Journal, vol. 7, no. 3, 1998.

8

[32] V. Tiwari, S. Malik, and A. Wolfe. “Power analysis of embedded soft-
ware: A first step towards software power minimization.” In Interna-
tional Conference on Computer-Aided Design, San Jose CA,
November 1994.

[33] J. Turley. “M.Core shrinks code, power budgets.” Microprocessor Re-
port, vol. 11, no. 14, pp. 12–15, October 1997.

[34] J. Turley. “M.Core for the portable millenium.” Microprocessor Re-
port, vol. 12, no. 2, pp. 15–18, February 1998.

[35] A. Vahdat, A. Lebeck, and C. Ellis. “Every joule is precious: The case
for revisiting operating system design for energy efficency.” In SI-
GOPS European Workshop, September 2000.

[36] N. Vijaykrishnan, M. Kandemir, M. Irwin, H. Kim, and W. Ye. “En-
ergy-driven integrated hardware-software optimizations using simple-
power.” In Proc. 27th Annual International Symposium on Computer
Architecture (ISCA’00), Vancouver BC, June 2000, pp. 95–106.

[37] T. Zhang. “RTOS Performance and Energy Consumption Analysis
Based on an Embedded System Testbed.” Master’s Thesis, University
of Maryland at College Park, May 2001.

[38] C. Lee, M. Potkonjak and W. H. Mangione-Smith. In Proc. 30th An-
nual International Symposium on Microarchitecture (MICRO’97),
Research Triangle Park NC, December 1997, pp. 330-335.

