Design for ReRAM-based Main-Memory

Architectures
Meenatchi Jagasivamani Mehdi Asnaashari Donald Yeung
Candace Walden Sylvain Dubois Bruce Jacob
Devesh Singh Crossbar, Inc. Dept. of Electrical Computer
Luyi Kang Santa Clara, CA Engineering
. University of Maryland
Shang Li College Park, MD
Dept. of Electrical Computer orege Tark,
Engineering
University of Maryland
College Park, MD
ABSTRACT CCS CONCEPTS

With the anticipated scaling issues of DRAM memory tech-
nology and the increased need for higher density and band-
width, several alternative memory technologies are being
explored for the main memory system. One promising can-
didate is a variation of Resistive Random-Access Memory
(ReRAM) which implements the memory bit-cells on Back-
End-of-Line (BEOL) layers. This allows for fabrication of
the processor logic and ReRAM main-memory to be imple-
mented on the same chip. As the memory cells can be stacked
vertically, the density of this memory also scales to 1-4F2.
This tight integration allows for a high amount of parallelism
between the processor and memory systems and delivers low
access granularity without sacrificing density or bandwidth.

In this paper, we explore physical integration of a proces-
sor with a ReRAM-based main-memory system using the
bitcell technology developed by Crossbar, Inc. We present
Crossbar’s ReRAM technology characteristics, the method-
ology and assumptions used for our digital implementation,
and summarize the results obtained for different array con-
figurations. Our results indicate that, in addition to the over-
head for the ReRAM access circuits, the overall integrated
area increases by 11% to 19%, based on the configuration at
the 45nm process node. Results from architectural simula-
tion comparing DRAM with ReRAM based architecture are
presented.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

MEMSYS 19, September 30-October 3, 2019, Washington, DC, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7206-0/19/09....$15.00
https://doi.org/10.1145/3357526.3357561

« Hardware — Non-volatile memory; - Computer systems
organization — Embedded systems.

KEYWORDS

ReRAM, main-memory, emerging technology, digital imple-
mentation, layout

ACM Reference Format:

Meenatchi Jagasivamani, Candace Walden, Devesh Singh, Luyi Kang,
Shang Li, Mehdi Asnaashari, Sylvain Dubois, Donald Yeung, and Bruce Ja-
cob. 2019. Design for ReRAM-based Main-Memory Architectures.

In Proceedings of the International Symposium on Memory Systems
(MEMSYS °19), September 30-October 3, 2019, Washington, DC, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3357526.
3357561

1 INTRODUCTION

The memory bus is a major limiting factor to the overall sys-
tem performance. Current CPU performance is typically 3-4x
faster than the rate delivered by overall memory system([7].
There are several mitigation strategies that are currently em-
ployed to address this problem, at the hardware (memory
hierarchy), software (prefetch, managing access patterns),
and at the system level (multiple memory controllers). How-
ever, we are fundamentally limited by the number of wires
that connect the processor and the memory chip. This cre-
ates a bottleneck that backs up the flow of data between
the two components, as shown in Figure 1. Therefore, even
though the memory latency for a system is sufficiently fast,
the overall perceived latency time might be slow. We see
that this bandwidth wall stems from the limited number of
memory access points that exist in current systems.

Several recent technologies have enabled a key innovation
in computer architecture to replace traditional DRAM-based
main-memory system with emerging non-volatile memory
technologies and to help address the memory bandwidth

https://doi.org/10.1145/3357526.3357561
https://doi.org/10.1145/3357526.3357561
https://doi.org/10.1145/3357526.3357561

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

Cache Cache Cache Cache Cache Cache |
| ~x100ns

e

Off-chip Off-chip

e x

Figure 1: Limited Connections attributed to Memory
Bandwidth Wall

problem. Our proposed solution involves integrating ReRAM
as the main-memory for a CPU on the same chip. Note that
this is different from 3D stacked-die types of approaches that
make use of physical integration of discrete dies. Our solu-
tion involves the ReRAM memory bitcells residing in metal
layers which are fabricated on the same die, above the proces-
sor logic. Figure 2 illustrates this difference by comparing a
conventional architecture involving a separate CPU die (Fig-
ure 2a), versus that of a Monolithic Computer[1] where the
CPU logic and the ReRAM main-memory reside on the same
chip (Figure 2b). This technology has been demonstrated and
fabricated at 40nm [2].

rF 4 F 4
rF 4 CPU y 4
a F 4
a F 4

(b) Single CPU Die with
ReRAM MiM Layers

(a) CPU with HBM-Like
DRAMs on Si Interposer

Figure 2: Comparison of (a) Conventional with a (b)
Monolithic Architecture

The rest of the paper is organized as follows. Section 2
summarizes the Crossbar ReRAM technology and the physi-
cal design integration constraints we used for our area study.
Section 3 presents our methodology for the digital imple-
mentation, the results of an integrated ReRAM-processor
design and of a SRAM-ReRAM design. Section 4 presents
architectural study using SST to compare a DRAM-based
system against a ReRAM-based architecture. Finally, section
5 summarizes the paper in conclusion.

2 CROSSBAR RERAM TECHNOLOGY

In this section we present a brief overview of Crossbar ReRAM
characteristics, integration constraints relevant to this study,
and the CAD tool methodology used.

Jagasivamani and Walden, et al.

2.1 ReRAM Physical Characteristics

The Crossbar bitcell couples the resistive switching medium
with a FAST selector device with a high RAnon/Roff ratio
and integrates with standard CMOS processes. The bitcell
relies on the creation of microscopic conductive filaments
in the switching medium through ion migration for the re-
sistive element [3, 4]. Figure 3(a) shows the cross section of
the 1S1R (1 selector per 1 Resistive element) bitcell used. A
proprietary FAST selector device enables high selectivity and
fast access times. A voltage above a threshold (> VTH) is re-
quired to select the cell to perform a read or write operation.
For program, a much higher voltage (>VPRG) is applied to
enable the formation or resetting of the conductive filaments.
Figure 3(b) shows the bias scheme of the crossbar memory
array for selection. All wordlines and bitlines are held at V/2,
while the selected cell’s wordline and bitline are biased to
have a difference of V across it. The high selectivity (>10°-
10'%) ensures minimal sneak path current on unselected cells
on the same bitline, which have a potential of V/2 across
their cells.

o
N B A
filament \% .\'*1%\ '\'\1”« \'\7,1«
o

v/2 v/2 0 v/2

Integrated ‘
Switch & /
Resistive |
Element ‘

Figure 3: (a) 1S1R ReRAM bitcell cross-section (b)
Crossbar array bias scheme, with a selected cell

Table 1 summarizes the key performance metrics of Cross-
bar’s ReRAM array. During read, the voltages are expected to
operate in the nominal range for the technology, while write
voltages are expected to be pumped to a higher voltage levels.
As noted in the table, the bandwidth per array is 4-8 bits.
Therefore, to provide sufficient bandwidth to a single core,
we envision several arrays that are distributed across the
full-chip and are accessed in ganged mode, in a Distributed
Shared Memory like architecture.

2.2 ReRAM Integration with Logic

The ReRAM memory developed by Crossbar is CMOS com-
patible and back end of line (BEOL) stackable. As mentioned
in Section 1, this type of ReRAM is organized so that the
bitcells are stacked on higher metal layers. The peripheral
support circuitry to perform the address decode, row and
column selection, and sense amplifier read and verify circuits
would be implemented in the diffusion/substrate and some
of the lower metal layers.

Design for ReRAM-based Main-Memory Architectures

Key Parameter Performance
Area 4-16 F*
Bandwidth per array 4-8 bits
Read Latency 200-700 ns
Write Latency 1us

Cell Leakage 0.1 nA/cell
Program Energy 10-100 p]J/cell
Endurance > 10° - 108 cycles
Retention > 7-10 years
Scaling Potential < 10 nm
Ron/Roff ratio 100
Selectivity (DI @ VR, VR/2) > 10° - 1010

Table 1: Crossbar 1S1R ReRAM Parameters

When the ReRAM memory circuits are placed alongside
other blocks, the peripheral circuits would be realized as
blocked areas. In traditional digital implementation flow, we
can think of these as placement blockage areas on which
standard cells cannot be placed. Crossbar’s stacked ReRAM
memory utilizes roughly a 25% memory to periphery area
ratio for a 2-layer stack.

In a full-chip implementation, we expect multiple arrays
to be distributed across the chip, as mentioned in section
1. This naturally causes several areas of "blocked” regions
where the peripheral circuits of the ReRAM need to be placed.
At the same time, it is desirable to allow for some signal con-
nectivity through these blocked regions to alleviate routing
congestion of the logic circuits. Because the peripheral area
must allow for connection to the ReRAM layers, there will
be restriction relating to the interconnect routing over these
blocked regions. The specific metal layers that are blocked
have significant impact on the routability of the overall inte-
grated design. Completely blocking all metal routing over
the blockage region necessitates any routing connections to
go around the blocked regions which results in significant
additional routing area overhead with an integrated design.
A more realistic assumption would allow a limited amount
of metal routing over the peripheral region for routing con-
nections to pass through. This can be realized even if the
number of ReRAM stack increases, as the blocked region
could expand to accommodate a staggered connection from
the higher memory metal layers to the base transistors below.

Figure 4 shows how it would be possible for a signal feed-
through path through the blocked ReRAM peripheral logic
region by staggering the via tap points from the ReRAM
layer above. The width of the ReRAM peripheral circuit may
need to increase as the number of stack layers increase. This
is the approach we have adopted for our study.

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

ReRAM Peripheral
Circuits

——
\\

Via tap points from

B«— —ReRAM Mn layer to
.rf—f“transistorlayer
=

Figure 4: Limited Signal Feed-through Paths

In our approach, we assume that ReRAM is placed in the
upper most level, which is above metal-10 layer for the pro-
cess technology we have used for this study. Signal feed-
through paths across the blocked ReRAM peripheral circuits
are critical to efficiently make use of noncontiguous floor-
plans. We had observed that when we completely block sig-
nal routing on the ReRAM peripheral circuit region, the Auto-
Place-and-Route (APR) fails in generating the layout. The
blockage layer settings we have used limits metal usage com-
pletely on lower layers but allows for signal feedthroughs
on metal 9 and 10, just under the metal-11 layer used by the
ReRAM array. Since details of the metal usage by the ReRAM
is process-specific, these assumptions serve as a rough ap-
proximation of routing congestion faced during the APR
step.

3 AREA STUDY OF RERAM-PROCESSOR
INTEGRATION

Our aim for the physical design study was to explore a mono-
lithic processor core that can be physically integrated with a
ReRAM memory on the same chip. In this section, we present
area experiments of integrating a standard-cell based synthe-
sized RISC processor circuit with a ReRAM crossbar memory
circuit and analyze the area and routing congestion that re-
sults from such an integration. Two different integration
configurations are presented in this section with the area
impact results obtained.

3.1 CAD Methodology

Our Digital Implementation CAD flow, shown in Figure 5,
uses Synopsys Design Compiler for Synthesis and Cadence

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

Encounter to perform the Auto-Place-and-Route (APR) step
of the flow to produce the final GDSII layout.

| RISC-V Processor

Netlist(*.v)
e
Synopsys
- Design
- Compiler
L |
45nm process 2 E2 i
FreePDK and Synthesized)
Nangate Netlist (*_syn.v) (Blockage Layer
std-cell library -\\ T . Settings for
\\ - embedding
\ ReRAM
Cadence R

Encounter

Figure 5: CAD tool flow for Digital Implementation

We use the open-source NCSU FreePDK 45nm process de-
sign kit and the Nangate open source digital library for the
45nm process node. This allows us to perform relative com-
parison studies to model the physical integration of ReRAM
with a processor. We chose the open-source Berkeley RISC-V
VSCALE processor as the core for studying the processor-
memory area impacts. The synthesizable Verilog netlist of
the core is called VSCALE and uses a 32-bit instruction set
with a single-issue in-order 3-stage architecture.

To mimic the integration constraints listed in the previous
section (2.2), two types of blockage layers are indicated in
the Cadence Encounter setting. The first is for the placement
blockage to prevent standard cells from being placed, and
the second is routing blockage for the specific metal layers
to limit routing. For this work, we mimic the restricted metal
routing described in the previous section by blocking metal
layers 1-8 and allowing for the APR tool to route through the
blocked region using metal 9 and 10. The ReRAM memory
layers are assumed to be in metal layers 11 and 12 above.

3.2 Single ReRAM Cluster Integration

Our first study consisted of creating a physical layout of
the integrated ReRAM peripheral circuit with the VSCALE
core using blockage layers in the Cadence Encounter tool.
The blockage settings and placement are based on the ini-
tial specifications provided by Crossbar on the integration
constraints of an ReRAM array with the logic area under-
neath. The peripheral region is to be in the shape of an 'L’

Jagasivamani and Walden, et al.

for the support circuitry, such as row and column decoders,
sense amplifiers, and program circuits. We can implement
this constraint in the digital implementation flow by creat-
ing a physical blockage region in the shape of an 'L’ that
prevents any standard cells from being placed. Given the L
shape of the ReRAM’s support circuitry, we have adopted a
four-instance centrally located ReRAM configuration, with
a cross shape, as shown in Figure 6.

Figure 6: Digital Implementation of an integrated
ReRAM RISC-V Processor

This configuration allows for the peripheral blockage re-
gions to be abutted with each other, resulting in a contiguous
blockage region for higher area utilization. This configu-
ration has the advantage of allowing for I/O connectivity
between the ReRAM memory and the processor, as well as al-
lowing for connection between the overall tile which would
need to communicate with other blocks.

We first used Cadence Encounter to perform the APR
and generate the layout for the core alone. Our approach
measures minimum feasible area by iteratively reducing the
floorplan dimension and checking for congestion, DRC, con-
nectivity violations. For the VSCALE core, using this PDK,
the synthesized netlist targeted an operating frequency of
150MHz with a total of 59,672 standard cells at the 45nm
process technology (nominal process, 1v, 27c). The VSCALE
processor’s area without any integration was found to be
30,373 sq um, after performing APR.

We next created a physical layout of the integrated ReRAM
peripheral circuit with the VSCALE core using the above

Design for ReRAM-based Main-Memory Architectures

physical constraints as inputs to the Cadence Encounter tool.
For this experiment, we used 4 ReRAM arrays, each of size
75um x 75um, which corresponds to a memory capacity of
about 0.5MB for a 2-layer ReRAM stack. Note that crossbar
has demonstrated feasibility of scaling to 8-layers for the
ReRAM stack. Table 2 summarizes these results.

Results
Standard-cell area 22,088 sq um
Target Frequency 100 MHz

Minimum Core Area for

172 um x 172 um = 30,373 um
Processor Alone

Core Density = 98.9%
Total Wire Length = 358 um
Minimum Area for Integrated | 200 um x 200 um = 40,026 um
ersion with Blocked area: Core Density = 84.8%
;600 sq um Total Wire Length = 278 um
Additional Area Impact due 40026/(30373+5600) = 1.1127
to Integration -> 11.3% penalty

Table 2: Area Impact of Processor-ReRAM Integration

Since the peripheral region takes 25% of the ReRAM area,
this amounted to a total blocked region of 5600 sq um for
this configuration. Figure 6 shows the final APR layout with
the VSCALE processor along with the metal layers. Each of
the red-square represents a single ReRAM array (with the
L-shaped peripheral region underneath). The total area of
this integrated design was 40,026 sq um, which is 31% higher
than the digital implementation of the processor alone. Note
that this addition includes an additional area penalty from
adding in the embedded block of 11.3% (after accounting for
the blockage area and the area of the cells) in 45nm process.

The area penalty from the integration is measured as the
difference between the total area of the integrated design
and the sum of the VSCALE processor area and the ReRAM
blocked region. This area penalty is mainly attributed to
additional area needed for the routing of signals due to the
blocked area in the center, around which there would be a
higher incidence of routing congestion. There is also minor
contribution due to standard-cell placement inefficiencies
and additional filler cells incurred due to the larger overall
area of the integrated block.

3.3 Multiple ReRAM Cluster Integration

The previous area study used a single ReRAM array to fit
within the VSCALE core. VSCALE is a 32-bit integer core
and is not representative of realistic cores which tend to be
larger and more complex. For our next study, we considered
a scenario where a larger processor is used, multiple ReRAM
arrays are embedded for increased bandwidth. The scenario
that we have setup for the second experiment is a 256-bit
scaled version of the VSCALE processor which is integrated

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

with four instances of the ReRAM crosses. Figure 7 shows
the digital implementation of this design.

Figure 7: Multiple ReRAM clusters integrated with a
256-bit RISC-V Processor

Although this extrapolation only scales the data path por-
tion of the processor and will not model impacts of the con-
trol path of a more complex, realistic processor, we can still
infer the impact of routing congestion from a larger proces-
sor. The implementation shows a 2x2 array of ReRAM crosses
integrated with a 256-bit integer RISC-V processor. Using
a ReRAM array of size 109um x 109um, the total ReRAM
data storage realized would be 4MB at 45nm process node
for the 2-layer stack. In this study, we seek to find the impact
of the spacing between the ReRAM crosses on the overall
area efficiency. This was achieved by iteratively providing
smaller floorplan dimensions at each spacing to find the min-
imum dimension. The results of the experiment are shown
in Figure 8.

The design-area parameter reported in Figure 8 (a) is the
minimum area that was feasible using our EDA flow and has
successfully passed the DRC, LVS, and timing constraints.
The min-area (dotted-line) shown on the graph is the theo-
retical limit on the minimum area possible considering the
inter-tile spacing and the ReRAM embedded block size. At
higher inter-tile spacing, this theoretical limit is the lower
bound as the routing constraints don’t restrict the layout. At
the lower-end of the inter-tile spacings, we see the effect of
the routing congestion limiting the feasible design-area.

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

0.8
——chip area (sqg mm)
0.7 - min area (sqg mm)
0.6
05
€
€ 04
(=
2
~ 03
g
< 0.2
0.1
0
0 100 200 300 400 500
inter-tile spacing (um)
(a) Overall Area Impact
140%

-=-stdcell efficiency
120% array efficiency
-=-% penalty

100%
o 80%
a0
8
& 60%
2
&
40%
20%
0%
0 100 200 300 400 500
(b) inter-tile spacing (um)

(b) Area Efficiency Impact

Figure 8: Impact of Inter-ReRAM array spacing on
Area and Efficiency

Figure 8 (b) reports the array and standard-cell efficiency
values measured. Array efficiency is calculated by dividing
the ReRAM array area by the minimum feasible design area
to represent the percentage of usable ReRAM array. The
theoretical limit for this would be 100%, if the entire chip
could be covered by ReRAM array. The "stdcell efficiency”
parameter reports the percentage of the total area used by
the standard-cell and represents the amount of usable CPU
area. The theoretical limit for this value would be 75%, as
25% would need to be blocked for the ReRAM’s peripheral
logic.

As shown in Figure 8 (b), an optimum inter-ReRAM spac-
ing exists to maximize ReRAM array efficiency at close to
50%, at which point the area penalty is 18%. This area penalty

Jagasivamani and Walden, et al.

follows the calculation given in section 3.2, as follows.

Integrated.Area

Area.Penalty = - -
(CPU.Logic.Area + ReRAM.Peripheral . Area)
The results indicate that if there is not sufficient spacing
between the ReRAM peripheral circuit’s blocked regions,
then network congestion occurs which cannot be resolved
by the APR. On the other hand, if the spacing is too far apart,
the entire generated layout can fit between the tiles result-
ing in large unused spaces. Note that it might be possible
to optimize this layout manually and utilizing the areas in
the corner to overcome this, however manual layout is be-
yond the scope of our initial area study. At 45nm, with our
design configuration, the optimum inter- spacing is 100um
to 150um. Larger spacing (> 200um) leads to inefficiency
from unused synthesized areas (empty space) while smaller
spacing (<100um) leads to inefficiency from routing conges-
tion between standard cell groups. For alternative configu-
rations, the specific optimal point could be affected by the
relative size of the processor and the blocked region due
to the ReRAM array and would be worth investigating this
relationship in a future study.

Extrapolating these results to an 8-layer stack would create
a 16MB ReRAM memory integrated into the ReRAM CPU tile
with an area of 0.4 mm?. For a 400 mm? die size, the above
ReRAM array could be tiled 1000 times across the chip, to
produce a total storage capacity of 16GB ReRAM. Because an
8-layer stack would require additional peripheral circuits to
decode the wordline per stack and/or higher current driving
transistors, the number of cores will be scaled down. At the
16nm process, assuming a 10x reduction in area, a 400 mm?
chip should be capable of delivering 160GB ReRAM storage.

3.4 SRAM-ReRAM Integrations

One other configuration of interest is integrating an SRAM
memory array underneath the ReRAM memory. The physical
layout of an SRAM memory also follows a 'L’ shaped periph-
eral region encompassing an array of SRAM cells. SRAM and
ReRAM layouts complement each other perfectly because
SRAM bitcells occupy the Front-End-Of- Line (FEOL) layers,
while ReRAM layers occupy the BEOL layers. This means
that for the SRAM array cells themselves, they only from
substrate upto metal-2 layers leaving all of the above layers
free and unused. On the other hand, for the ReRAM array
cells, they would occupy higher metal layers, such as metal-
11 and metal-12 in our 45nm examples. This allows them
to be fitted naturally within each other and makes SRAM a
ideal candidate to be placed underneath the ReRAM from a
layout point of view.

From a system architecture point of view, we are interested
in this SRAM-ReRAM configuration as an SRAM write-back
cache to an ReRAM main-memory. This would minimize the

Design for ReRAM-based Main-Memory Architectures

impact of ReRAM write latency, which is on the order of
1us. For our study, we have selected an opensource academic
memory compiler, called OpenRAM, created by UC-Santa
Cruz and OSU [5]. This tool includes SRAM leaf cells for the
45nm process using the same FreePDK45 design kit used by
our standard-cell logic.

Figure 9 shows four SRAM arrays placed together with
ReRAM array on top. The SRAM arrays are rotated to allow
for the I/O ports of the SRAM to be accessed externally and
not conflict with the central control region of the ReRAM
array. The total SRAM capacity in this instance is 16kB (4kB
each SRAM) with a total layout area of 211,725 sq. mm.

ReRAM over SRAM array

Figure 9: ReRAM Integrated with SRAM Memory

Note that the SRAM array generated in our study is made
using an academic SRAM bitcell of size 1.344um x 0.707um,
which is approximately 3x larger than industry SRAM bitcells
at the 45nm process node. Therefore, the SRAM capacity can
be expected to scale with a more realistic, smaller bitcell
size and can be verified by using a commercial memory
compiler instead of the OpenRAM memory compiler we
used. However, the floorplan proposed for the SRAM-ReRAM
configuration would still be applicable.

Compared to the ReRAM-CPU layout, SRAM’s array re-
gion would largely be limited to the lower metal layers (below
metal-4). Therefore, we feel that the ReRAM I/O connections
can be made on the higher regions without difficulty. Also,
because the four SRAM arrays are independent blocks, there
is no need for the signal feedthroughs on the peripheral

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

blockage regions, which makes this a more straightforward
implementation.

4 ARCHITECTURAL SIMULATION

We also explored the performance implications of a ReRAM
based main-memory architecture against a DRAM archi-
tecture, as well as the impact of a lower write-latency due
to a reduced write-energy requirement. Figure 10 shows
the architectures we used for comparing a ReRAM architec-
ture with 1000 memory-access points against a DDR4 based
DRAM architectures with six memory controllers. We used
a mesh type of network-on-chip (NoC) topology for both
architectures.

.
MC— led CPlI<
e

e o]
)
e o]

DRAM Architecture

Bank bank T T bemk o Pank
-:T++1—++++:

sttt HE A+
(el (e}
-l-r++1'—++1—-|-l-
P 0+ ++ 4+
R R N

1 e |
'ii"'HHt'

k = T

- - -=-EEE = = &N

ReRAM Architecture

Figure 10: Architectural Comparison

We performed this analysis using an open-source archi-
tectural simulator, Structural Simulation Toolkit (SST) from
Sandia National Laboratories [12]. SST is a component based,
cycle-accurate simulator that is useful for fast comparison of
different scenarios. Our CPU was modeled using Miranda, a
pattern-based CPU simulator, to support 8 issues per core per
cycle. We used the hardware-verified DRAMSIM3 simulator
to model a dual-rank DDR4-2666 DRAM device operating at

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

2.66GHz. For ReRAM, we assumed a centrally located mem-
ory IP with support controllers and bank-select logic located
underneath the memory, while the CPUs surround the ar-
ray. We used two benchmarks to compare our architecture:
STREAM and GUPS. STREAM mimics dense memory access
and is expected to favor the higher access granularity of tra-
ditional DRAM architectures. GUPS mimics sparse memory
accesses for graph like algorithms and was expected to favor
ReRAM’s low-access granularity. Based on our area analy-
sis, we expected several mini ReRAM tiles to be accessed in
parallel to provide sufficient bandwidth.

Figure 11 summarizes the result of the architectural sim-
ulation. In order to understand the impact of the longer
write latency of ReRAM, we compared DRAM with two ver-
sions of ReRAM: SlowWrite and FastWrite. For the ReRAM
SlowWrite version, we used a write-latency of 1us, while for
the FastWrite version, we used 200ns. The read latency was
set to 200ns for both versions of the ReRAM. We simulated
the comparison with both 21 cores and 68 cores, based on
expected number of cores that could be fabricated on a stan-
dard chip size. The results indicate that when the number
of cores is low (21), DRAM-based architecture outperforms
ReRAM, even for GUPS type of algorithms. Although there
was a small performance improvement with the ReRAM-
FastWrite version, this still was not enough to overcome
DRAM architecture performance. However, when the num-
ber of cores was increased from 21 to 68 cores, we see that in
both STREAM and GUPS based benchmarks, ReRAM is able
to outperform DRAM-based architecture. This is due to the
higher amount of memory access requests needed with the
higher core count. This requirement is more easily met by
a more parallel memory system such as the one architected
with the ReRAM based main-memory. There needs to be
enough parallel request to fully exploit the high amount of
parallelism afforded by ReRAM and overcome the higher
latency with ReRAM.

Table 3 compares the memory bandwidth processed in
each of the simulated conditions. At lower core count, DRAM-
based architecture provides STREAM bandwidth of 76GB/s
is nearly 40% higher than the one provided through ReRAM-
based architecture. At higher core count, ReRAM provides a
higher bandwidth of 138GB/s, while the DRAM-based archi-
tecture’s STREAM bandwidth is 30% lower at 95GB/s.

Using the architectural simulation framework, we next
simulated for a number of core count to compare ReRAM
against a DRAM-DDR4 and a High-Bandwidth-Memory-2
(HBM2) version of DRAM main memory. The results, shown
in Figure 12, confirm that with sufficient processing power,
the highly parallel ReRAM with long latencies performs bet-
ter than high-speed DRAM with limited memory controllers.

The cross-over point when ReRAM outperforms is 85GB/s
for DRAM-DDR4 and 135GB/s for DRAM-HBM2 device with

Jagasivamani and Walden, et al.

STREAM -- RunTime (ms)

ReRAM_SlowWrite ReRAM_FastWrite

(@)

GUPS -- RunTime (ms)
M 68 cores

DRAM ReRAM_SlowWrite ReRAM_FastWrite

(b)

W 21 cores
W 68 Cores

PR G B
[R -

Run Time {ms)
o o o
EoT = R]

o
[

=]

DRAM

W 21 cores

o o e
= =] w

Run Time {ms)

o
fa

Figure 11: Impact of Inter-ReRAM array spacing on
Area and Efficiency

Bandwidth
(GB/s) Cores | DRAM i{gﬁevl\\%frite %&[g\%ﬁte
GUPS 21 1.36 0.89 1.07

68 1.53 1.94 2.51
STREAM 21 76 37.45 47.07

68 95.6 136.63 138.6

Table 3: Bandwidth Comparison

the STREAM benchmark. One interesting note is with the
slight worsening of performance with HBM DRAM at very
high core count of 512. Because of HBM’s higher bandwidth
interface, the low-access granularity of GUPS suffers with
HBM due to stalls from prior access requests. In the STREAM
bandwidth plot, the star represents the reported 90+ GB/s
number from Intel Knights Landing (KNL) [13], which cor-
roborates with our simulation results. At this point, ReRAM

Design for ReRAM-based Main-Memory Architectures

STREAM Bandwidth Comparison

1000.00
100.00 S “ " intelkNL
- 5
L]
Ll
o
Lo
=
3
1000
E ~—-DRAM-DDR4
ReRAM
~DRAM-HBM
1.00
1 10 100 1000

Number of Cores

Figure 12: STREAM Benchmark Comparison Results

outperforms DRAM-DDR4 by 30% for the STREAM bench-
mark case and meets the performance of HBM2-based archi-
tecture.

5 CONCLUSION

In this work, we have demonstrated a method for evaluat-
ing integrated ReRAM-Processor type of architectures us-
ing standard EDA tools. We also presented an overview of
Crossbar ReRAM technology that has been demonstrated in
fabricated silicon chips that allow this novel on-chip main-
memory architecture. Our layout results indicate that we can
integrate a cluster of ReRAM arrays with a processor logic
underneath and incur an area penalty of 18% and an over-
all area efficiency of 50%. Finally, architectural simulations
comparing ReRAM and DRAM based architectures showed
that ReRAM-based main memory architectures outperforms
at higher core counts, where their high amount of memory
parallelism can be sufficiently utilized.

ACKNOWLEDGMENTS

This work was partially supported by the National Science
Foundation under Award No. 1642424 and the Department
of Defense under Contract No. FA8075-14-D-0002-0007, TAT
15-1158.

REFERENCES

[1] M. Jagasivamani, C. Walden, D. Singh, L. Kang, S. Li,M. Asnaashari,
S. Dubois, B. Jacob, and D. Yeung, "Memory-systems challenges in
realizing monolithic computers”, Proceedings of the International Sym-
posium on Memory Systems - MEMSYS 18, 2018.

[2] ReRAM Memory | Crossbar. (n.d.). Retrieved from https://crossbar-
inc.com/en/

[3] Y. Chen, C. Petti, "ReRAM technology evolution for storage class
memory application,” 2016 46th European Solid-State Device Research
Conference (ESSDERC), Lausanne, 2016, pp. 432-435.

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

[4] Sung Hyun Jo, T. Kumar, S. Narayanan, W. D. Lu and H. Nazarian,

”3D-stackable crossbar resistive memory based on Field Assisted Su-

perlinear Threshold (FAST) selector,” 2014 IEEE International Electron

Devices Meeting, San Francisco, CA, 2014, pp. 6.7.1-6.7.4.

M. R. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, M. Sarwar, "Open-

RAM: An Open-Source Memory Compiler”, Proceedings of the 35th

International Conference on Computer-Aided Design (ICCAD), 2016.

1. Bhati, M. T. Chang, Z. Chishti, S. L. Lu and B. Jacob, "DRAM Refresh

Mechanisms, Penalties, and Trade- Offs”, in IEEE Transactions on

Computers, 2016, vol. 65, no. 1, pp. 108-121.

[7] JohnL.Hennessy, David A. Patterson, Computer Architecture: A Quan-

titative Approach, Elsevier, pp. 289, 2007.

[8] T. Y. Liu et al., "A 130.7mm2 2-layer 32Gb ReRAM memory device

in 24nm technology”, 2013 IEEE International Solid-State Circuits

Conference Digest of Technical Papers, San Francisco, CA, 2013, pp.

210-211.

R. Fackenthal et al., ”19.7 A 16Gb ReRAM with 200MB/s write and

1GB/s read in 27nm technology”, 2014 IEEE International Solid-State

Circuits Conference Digest of Technical Papers (ISSCC), San Francisco,

CA, 2014, pp. 338-339.

[10] S.I. Association, "International technology roadmap for semiconduc-
tors,” in ITRS Report, 2017.

[11] Lei Wang, CiHui Yang, Jing Wen, and Shan Gai, "Emerging Nonvolatile
Memories to Go Beyond Scaling Limits of Conventional CMOS Nan-
odevices”, Journal of Nanomaterials, vol. 2014, Article ID 927696, 10
pages, 2014.

[12] A.F.Rodrigues, R. C. Murphy, P. Kogge, and K. D.Underwood, "Poster
reception: the structural simulationtoolkit”,Proceedings of the 2006
ACM/IEEE conference onSupercomputing - SC 06, 2006.

[13] J. Jeffers, J. Reinders, and A. Sodani, "Knights landingoverview” Intel
Xeon Phi Processor High Performance Programming, pp. 15-24, 2016.

[14] Xu, C., Niu, D., Muralimanohar, N., Balasubramonian, R., Zhang, T., Yu,
S., Xie, Y., "Overcoming the challenges of crossbar resistive memory ar-
chitectures”, 2015 IEEE 21st International Symposium on High Perfor-
mance Computer Architecture (HPCA). doi:10.1109/hpca.2015.7056056

[15] Zhang, H., Xiao, N, Liu, F., Chen, Z., "Leader: Accelerating ReRAM-
based Main Memory by Leveraging Access Latency Discrepancy in
Crossbar Arrays”, Proceedings of the 2016 Design, Automation and
Test in Europe Conference and Exhibition (DATE).

[5

—

G

—

[9

—

	Abstract
	1 Introduction
	2 Crossbar ReRAM Technology
	2.1 ReRAM Physical Characteristics
	2.2 ReRAM Integration with Logic

	3 Area Study of ReRAM-Processor Integration
	3.1 CAD Methodology
	3.2 Single ReRAM Cluster Integration
	3.3 Multiple ReRAM Cluster Integration
	3.4 SRAM-ReRAM Integrations

	4 Architectural Simulation
	5 Conclusion
	Acknowledgments
	References

