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• The Capacity Problem
• Solution 1: BOB Memory Systems
• Solution II: Hybrid Memory Cube
• Solution III: Non-volatile Main Memories
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The Capacity Problem
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Two DDR2-400 DIMMs Four DDR2-400 DIMMs
Source: Steve Woo. DRAM and Memory System Trends. October 2004.
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The Capacity Problem

… but wait, there’s more:3
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Problem: Capacity

MC MC

JEDEC DDRx
~10W/DIMM, ~20W total

FB-DIMM
~10W/DIMM, ~300W total
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Attempts at a Solution

• Highly Engineered DIMMs
(can cost $1000+ per DIMM)

• Fully-Buffered DIMM
(pushes the power envelope)
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Observations

• Cannot increase power 
significantly (e.g. to CPU scale)

• Cannot sacrifice aggregate 
bandwidth

• Need to approach 
commodity pricing

• Future-proof design 
would be highly desirable
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Solution I: BOB

Buffer On (mother-)Board
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AMD G3MXIntel SMI/SMBIBM Power 795
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Solution II: Micron HMC
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Solution II: Micron HMC

A single-chip BOB system
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Solution II: Micron HMC
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Solution III: Non-Volatiles
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Obvious Conclusions II

• Flash/NV is inexpensive, is fast 
(rel. to disk), and has better 
capacity roadmap than DRAM

• Make it a first-class citizen in 
the memory hierarchy

• Access it via load/store 
interface, use DRAM to buffer 
writes, software management

• Probably reduces capacity 
pressure on DRAM system

$CPU
Speed, density, cost

Can have TB-scale DIMMs today



BIG MEMORIES

Bruce Jacob

University of 
Maryland

SLIDE

Solution III: Non-Volatiles

156 MB/s. However, this was not considered a major drawback
as transfer times to such cards were less important than their
capacity. Until recently, NAND flash chips utilized a 40 MHz
asynchronous 8 bit interface that was capable of 40 MB/s.
This was also acceptable for some time as the access latency
of flash was still faster than other external storage media of the
time and this was not the bottleneck in the applications that
utilized it. However, as flash has taken on a new role with the
introduction of SSDs, its transfer times have begun to matter.

One major problem with flash devices was that each manu-
facturer had their own interface standard. This problem made
designing SSD hardware difficult and expensive as it had to
be tailored to a specific manufacturer’s standard. To foster
easier integration of flash devices and drive SSD adoption, the
NAND flash industry developed the ONFi 1.0 standard [3].

Another problem with flash devices is that the array of flash
cells within the chip are actually capable of producing data at
a rate of 330 MB/s without any modifications [12]. Realizing
that the asynchronous interface was the primary bottleneck in
flash performance, manufacturers have developed synchronous
standards such as ONFi 2.1 or Toggle Mode DDR. These new
standards enable much faster transfers of data by running at
faster frequencies than was possible with an asynchronous
approach. As a result, newer flash chips are capable of band-
widths of up to 200 MB/s. Furthermore, a new standard, ONFi
3.0, has even more recently been defined which will allow for
bandwidths of up to 400 MB/s. Therefore, the full bandwidth
potential of the flash array will soon be utilized to provide
faster data transfers and improve overall performance when
accessing flash. As a result of this additional bandwidth, the
host interface and software likely need to evolve in order to
fully expose the improved performance of the flash devices.

3. Hybrid Main Memory Overview

3.1. Current State of the Art - SSD Design

A block diagram of a typical flash-based solid state drive is
shown in Figure 1. The system consists of three main compo-
nents: host interface, an SSD controller, and a set of NAND
flash devices. The host interface is typically SATA, although
recently PCIe interfaces have become available for enterprise
applications. The SSD controller is the core of the system and
creates the abstractions necessary for utilizing NAND flash
devices in such a way that creates a useful storage system. It
performs tasks such as memory mapping, garbage collection,
wear leveling, error correction, and access scheduling. The
SSD controller also typically has a small amount of memory
either in the form of SRAM or DRAM to cache metadata and
buffer writes [6].

The NAND flash devices are where the data is stored on the
drive. SSDs leverage multiple devices to achieve high through-
put. These are typically organized into parallel channels with
one or more devices per channel. Internally, the NAND de-
vices are organized into planes, blocks, and pages. Planes are
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Figure 1: System design for SSD (top) and hybrid memory
(bottom).

functionally independent units that allow for concurrent opera-
tions on the device. Each plane has a set of registers that allow
for interleaved accesses. Blocks form the physical granularity
at which erase operations occur. Finally, each block consists
of multiple pages, which are the physical granularity at which
read and write operations occur.

In terms of the computer system performance, the delay for
an operation to a solid state drive starts when the user appli-
cation issues a request for some data that triggers a page fault
and ends when the operating system returns control to the user
application after the request has completed. At the hardware
level, the SSD controller receives an access for a particular
address and then later the controller raises an interrupt request
(IRQ) on the CPU to tell the operating system the data is ready.
A typical access to an SSD is shown in Figure 2. The time
from point B to point C is the amount of time needed for the
disk to process the request. The time from point A to point D
is the total amount of time spent waiting for the request from
the perspective of the application that made the request.

There are many intermediate software and hardware layers
involved in an SSD access. The software side on a Linux-
based system includes the virtual memory system, the virtual
file system, the specific file system for the partition that holds
the data (e.g. NTFS or ext3), the block device driver for
the disk, and the device driver for the host interface such as
the Advanced Host Interface Controller (AHCI) for Serial
ATA (SATA) drives [11]. At the hardware level, the interfaces
involved include the host interface to the drive, the direct mem-
ory access (DMA) engine, and the SSD internals. The host
interface is typically a SATA interface, which resides on the
southbridge for modern Intel processors. This means that the
request much first cross the Intel Direct Media Interface (DMI)
or equivalent before crossing the SATA interface. However,
our model for this paper assumes the pure PCIe 3.0 NVM Ex-
press interface and we utilize 16 lanes, which makes the model
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Performance normalized to that 
of TB-sized DRAM system
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Figure 9: System performance when combining all techniques. The IPC is normalized to the ideal case with enough DRAM to
store the entire working set.

many realistic workloads, we show that the hybrid memory
design can provide significant performance improvements
compared to an enterprise-class solid state drive. We believe
this design space is worth investigating further, as our paper is
only an initial glimpse into using hybrid memories as a faster
storage system. In particular, there is much work to be done
optimizing both the flash system and the operating system to
deal with this new design. We intend to investigate both of
these areas in future work.
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Bottom Line

• All three solutions are 
composable (this is GOOD)

• Power problem: solvable
• Bandwidth problem: solvable
• Cost problem: solvable
• HMC-style generic interface

is future-proof by definition
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