
The MIT Alewife Machine
ANANT AGARWAL, MEMBER, IEEE, RICARDO BIANCHINI, MEMBER, IEEE,
DAVID CHAIKEN, MEMBER, IEEE, FREDERIC T. CHONG,ASSOCIATE MEMBER, IEEE,
KIRK L. JOHNSON, DAVID KRANZ, JOHN D. KUBIATOWICZ,
BENG-HONG LIM, MEMBER, IEEE, KENNETH MACKENZIE, MEMBER, IEEE, AND DONALD YEUNG

Invited Paper

A variety of models for parallel architectures, such as shared
memory, message passing, and data flow, have converged in the
recent past to a hybrid architecture form called distributed shared
memory (DSM). By using a combination of hardware and software
mechanisms, DSM combines the nice features of all the above
models and is able to achieve both the scalability of message-
passing machines and the programmability of shared memory
systems. Alewife, an early prototype of such DSM architectures,
uses a hybrid of software and hardware mechanisms to support
coherent shared memory, efficient user-level messaging, fine-grain
synchronization, and latency tolerance.

Alewife supports up to 512 processing nodes connected over
a scalable and cost-effective mesh network at a constant cost
per node. Four mechanisms combine to achieve Alewife’s goals
of scalability and programmability: software-extended coherent
shared memory provides a global, linear address space; inte-
grated message passing allows compiler and operating system
designers to provide efficient communication and synchronization;
support for fine-grain computation allows many processors to
cooperate on small problem sizes; and latency-tolerance mech-
anisms—including block multithreading and prefetching—mask
unavoidable delays due to communication.

Extensive results from microbenchmarks, together with over a

Manuscript received September 1, 1997; revised June 15, 1998. This
work was supported in part by ARPA Contract N00014-87-K-0825, by
NSF Experimental Systems Grant MIP-9012773, by an NSF Presidential
Young Investigator Award, by Brazilian NUTES/UFRJ and CAPES/MEC
(Grant 2038/90-2) fellowships, and by the Office of Naval Research
Contract N00014-92-J-1801 in conjunction with ARPA order 8930. An
earlier version of this paper appeared in ISCA’95.

A. Agarwal is with the Laboratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, MA 02139 USA.

R. Bianchini is with Federal University of Rio de Janeiro, Ilha do
Fundao, RJ 21945-970 Brazil.

D. Chaiken is with AT&T Labs, Menlo Park, CA 94025 USA.
F. T. Chong is with University of California, Davis, CA 95616 USA.
K. L. Johnson is with Clearview Technologies, Inc., Waltham, MA

02452 USA.
D. Kranz is with Curl Corp., Cambridge, MA 02139 USA.
J. D. Kubiatowicz is with University of California, Berkeley, CA 94270

USA.
B.-H. Lim is with VMWare, Inc., Palo Alto, CA 94301 USA.
K. Mackenzie is with Georgia Institute of Technology, Atlanta, GA

30332 USA.
D. Yeung is with University of Maryland, College Park, MD 20742

USA.
Publisher Item Identifier S 0018-9219(99)01541-8.

dozen complete applications running on a 32-node prototype,
demonstrate that integrating message passing with shared memory
enables a cost-efficient solution to the cache coherence problem
and provides a rich set of programming primitives. Our results
further show that messaging and shared memory operations are
both important because each helps the programmer to achieve
the best performance for various machine configurations. Block
multithreading and prefetching improve performance significantly,
and language constructs that allow programmers to express fine-
grain synchronization can improve performance by over a factor
of two.

Keywords—Active messages, cache coherence, distributed
shared memory, fine-grain synchronization, large-scale
multiprocessors, message passing, parallel processing, rapid
context switching, shared-memory multiprocessors.

I. INTRODUCTION

The last few years have seen the introduction of a
number of parallel-processing systems with truly impressive
maximum performance. The amount of raw computation
packaged in a single chassis is quickly approaching a trillion
operations per second. Unfortunately, end users rarely ben-
efit from the advertised maximum performance of today’s
massively parallel systems. Any application that actually
exploits the full potential of a machine typically requires
months of careful programming, painful debugging, and
relentless tuning.

By integrating mechanisms from shared memory, mes-
sage passing and data flow architectures into a hybrid dis-
tributed shared memory (DSM) model, the Massachusetts
Institute of Technology (MIT) Alewife machine [4] shows
that a parallel architecture can yield a rich shared memory
programming environment on a scalable hardware base.
The hardware, compiler, and operating system combine
to achieve the goal of programmability by solving prob-
lems that traditionally burden multiprocessor programmers,
namely, scheduling computation and moving data between
processing elements. Features of this environment include
a globally shared address space, a scalable cache coherence
mechanism, a compiler that automatically partitions regular

0018–9219/99$10.00 1999 IEEE

430 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 3, MARCH 1999

programs with loops, a library of efficient synchronization
and communication routines, distributed garbage collection,
and a parallel debugger. Statistics-gathering tools help to
optimize performance.

These features allow programmers to write high-
performance applications quickly. A shared address
space relieves the programmer of the burden of address
computation for distributed data, caching eliminates the
need for explicit data movement, and automatic data
partitioning further simplifies the task of managing commu-
nication requirements. Distributed garbage collection gives
programmers the option of avoiding a traditional source
of many bugs in parallel applications: explicit memory
allocation and deallocation. Efficient synchronization and
communication routines—together with statistics-gathering
tools—help programmers tune performance once they have
programs working correctly.

The goal of scalability addresses both the cost of building
the machine and its ability to run programs efficiently.
The Alewife architecture permits a physically scalable
implementation. Similar to earlier message passing systems,
Alewife machines are built by replicating a single, modular
processing node. Passive backplanes provide the wires to
connect the nodes in a low-cost, two-dimensional mesh
network. In order to provide I/O facilities, Versamodule-
European (VME) and small computer systems interface
(SCSI) interface boards plug into the edges of the mesh.
Whether an Alewife machine has one node or 512 nodes,
this physical layout results in a constant cost per node.
In the prototype, despite unit quantity purchasing, a single
node costs only about $2000. With volume fabrication, this
cost could be reduced substantially.

This paper shows how the hardware and software com-
ponents of Alewife provide good performance on parallel
applications, without sacrificing physical scalability or pro-
grammability. Indeed, most applications were written for
other machines and run on Alewife without significant port-
ing effort. On any DSM architecture, the primary challenge
to achieving these goals simultaneously is the latency of
interprocessor communication, which dominates the time
required for intranode memory accesses. Unlike other DSM
architectures, Alewife provides four classes of architectural
mechanisms—each popularized by various computational
models such as shared memory, message passing, and data
flow—that implement an automatic locality management
strategy. This strategy seeks to maximize the amount of
local communication by consolidating related blocks of
computation and data and attempts to minimize the effects
of nonlocal communication when it is unavoidable. The
four classes of mechanisms are: coherent caches for shared
memory; integrated message passing; support for fine-grain
computation; and latency tolerance.

A. Coherent Shared Memory

Although Alewife provides the abstraction of globally
shared memory to programmers, the system’s physical
memory is statically distributed over the nodes in the
machine. On each node, a communications and memory

management unit (CMMU) [20] receives memory requests
from a Sparcle processor [2] and directs the requests to
local or remote memory. When necessary, the CMMU syn-
thesizes messages that fetch memory from remote nodes.

The memory hardware helps manage locality by caching
both private and shared data on each node. Caching in-
volves making a local copy of the remote data so that future
accesses do not incur network traffic. Systems with caches,
however, suffer the coherence problem. The coherence
problem arises when cached copies of data are modified
locally, resulting in an inconsistent view of memory. Solu-
tions to the coherence problem generally involve protocols
that allow multiple cached copies of read-shared data but
disallow sharing when a cached copy must be written by
invalidating all other copies. Invalidations are facilitated
in DSM’s by a distributed memory directory that keeps
track of the locations of each cached copy. Alewife uses
a scalable, software-extended scheme called LimitLESS
[10] (limited directories locally extended with software
support) to maintain the coherence of cached data. The
LimitLESS scheme handles common-case memory accesses
in the CMMU hardware but relies on software traps to
enforce coherence for memory blocks that are shared by
a large number of processors. The software traps invoke
software protocol handlers that extend the directory into
software managed memory, thereby limiting the amount of
dedicated directory memory.

B. Integrated Message Passing

While the programmer sees a shared memory program-
ming model, for performance reasons much of the un-
derlying software is implemented using message passing.
The performance of all of the layers of software that help
manage locality (including the compiler, libraries, run-time
system, and LimitLESS handlers) depend on an efficient
communication mechanism. Features in Sparcle and the
CMMU provide a streamlined interface for transmitting and
receiving messages: both system and user code can quickly
describe and atomically launch a packet directly into the
interconnection network; a direct memory access (DMA)
mechanism allows data to flow between the network and
memory; and a fast interrupt mechanism speeds message
reception and simplifies the task of writing message-passing
programs by eliminating the need to poll the network
frequently.

The Alewife hardware supports a seamless interface
between the various software layers by integrating the
shared memory and message-passing mechanisms. To do
so, the system provides forward progress guarantees to
shared memory accesses in the face of message reception
interrupts. In addition, the DMA engine maintains the
coherence between the data in messages and the data in
local caches [18].

C. Fine-Grain Computation

Given a fixed-size data set, the granularity of computa-
tion (the time between events that require interprocessor

AGARWAL et al.: MIT ALEWIFE MACHINE 431

communication) decreases as the number of processors in a
system increases. A system that cannot handle small tasks
efficiently must attempt to increase synchronization and
communication granularity artificially, possibly defeating
attempts to maximize parallelism. Alewife’s support for
fine-grain computation includes mechanisms popularized
by data flow and message passing architectures, namely,
fast user-level messages and support for full/empty bit
synchronization. User-level messages allow the processor
direct access to the network queues. Full/empty bit synchro-
nization associates a synchronization bit with each word of
memory and allows synchronization and data access to be
accomplished simultaneously.

Alewife’s programming languages, parallel C and Mul-
T, include constructs for expressing fine-grain synchro-
nization. These constructs allow a thread to synchronize
implicitly upon every memory access.

D. Latency Tolerance

Block multithreading and prefetching provide the last
line of defense in Alewife’s locality management strategy.
These mechanisms attempt to tolerate the latency of in-
terprocessor communication when it cannot be avoided.
Prefetching allows code to anticipate communication by
requesting data or locks before they are needed. Block
multithreading allows a processor to switch between threads
of computation on a cache miss or a failed synchronization
attempt.

Latency tolerance requires support from Alewife’s hard-
ware and software components. Prefetching and block mul-
tithreading both require lockup-free caches [17]. Prefetch-
ing requires support in the compiler and special memory
operations. Block multithreading requires a fast context
switch [3] and a solution to the window of vulnerability
problem created by interleaved threads of execution [19].

Although it is helpful to think of Alewife’s four mech-
anisms as being distinct, the machine’s implementation
integrates them tightly. For example, the CMMU’s transac-
tion buffer closes the window of vulnerability opened not
only by multithreading, but also by fast message handling
and software-extended coherence. The transaction buffer
also provides storage for prefetching and support for correct
ordering of messages. Similarly, Sparcle’s fast interrupt
mechanism accelerates LimitLESS event handling, message
reception, fine-grain synchronization events, and context
switching.

This paper describes the experience gained by designing,
fabricating, and running a complete parallel DSM system.
Specifically, it evaluates the effectiveness of the Alewife
architecture and its locality management strategy. Section II
describes the machine’s implementation and its program-
ming environment to show how the mechanisms combine to
produce a coherent system. Section III describes Alewife’s
primitive mechanisms and uses microbenchmarks to mea-
sure the base performance of the mechanisms in terms of the
latency and bandwidth of primitive functions. Section IV
presents detailed case studies of several applications that
illustrate the benefits of Alewife’s approach and examines

Fig. 1. The Alewife machine.

the relative benefits of DSM mechanisms when technology
changes the ratio of computation to communication speed.
Section V discusses related work on parallel architectures.
Finally, Section VI summarizes the insight gained from
implementing Alewife and briefly discusses results from
research that followed the Alewife experiment.

II. THE ALEWIFE MACHINE

The Alewife architecture is organized as shown in Fig. 1.
Memory is physically distributed over the processing nodes,
which use a mesh network for communication.

Each Alewife node consists of a Sparcle [2] processor,
64 Kbytes of direct-mapped cache, 4 Mbytes of data, and
2 Mbytes of directory (to support a 4-Mbyte portion of
shared memory), 2 Mbytes of private (unshared) memory,
a floating-point coprocessor, and an Elko-series mesh rout-
ing chip (EMRC) from California Institute of Technology
(Caltech). Both the cache memories and floating-point unit
(FPU) are off-the-shelf, SPARC-compatible components.
The EMRC network routers use wormhole routing and are
connected to form a direct network with a mesh topology.
The nodes communicate via messages through this network.
A single-chip CMMU services data requests from the
processor and network. Intelligent I/O Interface nodes in
Fig. 1 are attached to the edges of the mesh network,
and provide SCSI-based interfaces to disks and local area
networks (LAN’s). These I/O nodes are modified versions
of the compute nodes.

432 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 3, MARCH 1999

Fig. 2. Sixteen-node machine and 128-node chassis populated
with a 32-node machine.

Fig. 2 shows the physical realization of both a 16-node
Alewife system and a 32-node system within a chassis
scalable to 128 nodes. The 16-node system, complete with
two internal 3 1/2-in disk drives, is about 7412 46 cm,
roughly the size of a floor-standing workstation. Packaging
for a 128-node machine occupies a standard 19-in rack.
Timing numbers in this paper reflect the 32-node Alewife
machine, packaged in the lower right quarter of the 128-
node chassis.

User access to an Alewife machine is through a host
workstation. Client interface software connects to the
Alewife machine via UNIX sockets to a server process
running on the host. External network file system (NFS)
file access is also provided by the host.

The first Alewife machine became operational in May
1994. Results in this paper were obtained using first-silicon
versions of Sparcle and the CMMU. Although there are
a few bugs in the CMMU, all of them have software
work arounds. However, one of the bugs involves a timing
conflict with the FPU, requiring operation at 20 MHz when
floating point is in use. Integer codes run at 30 MHz.
For consistency, the remainder of this paper will quote
performance numbers at a 20-MHz system speed.

A. Sparcle Processor

Sparcle was derived from an industry-standard SPARC
(version 7) processor. It provides an efficient and tight
coupling between the processor pipeline and the commu-
nications network. Many of the features of the underlying
SPARC implementation are exploited directly by Alewife:
for example, the SPARC external coprocessor interface is
used for fast messaging, interrupt control, and fine-grained
synchronization. SPARC also provides register windows

that can be exploited as separate contexts for block mul-
tithreading.

Sparcle augments the basic SPARC architecture with a
few simple mechanisms to facilitate rapid messaging, block
multithreading, and fine-grain synchronization.

• User-Level Colored Loads and Stores:The SPARC
architecture defines an 8-bit Alternate Space Indicator
(ASI) that serves to tag all load and store operations
with one of 256 different “colors.” Sparcle allocates
the top 128 ASI values to the user and defines new
load and store instructions that emit these ASI values.

• Extra Synchronous Trap Lines:These lines enable
unique trap vectors for context-switch and fine-grain
synchronization traps.

• Context Management Instructions:New instructions
allow rapid switching between active hardware con-
texts. The SPARC current window pointer is visible
at the pins, permitting context-dependent state in the
CMMU and FPU.

These changes require an increase of fewer than 2000 gates
over the unmodified SPARC design. Together, they yield a
processor with support for low-overhead communication,
including a 14-cycle context-switch time for a remote data
cache miss.

B. The Alewife CMMU

The Alewife CMMU [20] implements most of the unique
functionality of Alewife. In an Alewife node, the CMMU
is connected directly to the first-level cache bus and serves
much the same functionality as a cache-controller/memory-
management unit in a uniprocessor. It contains tags for the
cache, provides dynamic random access memory (DRAM)
refresh and error correcting codes (ECC) and handles
cache fills and replacements. In addition, it implements
the architectural mechanisms described in this paper. The
CMMU also provides asynchronous queuing for the EMRC
network chips and a number of hardware statistics facilities.

Fig. 3 shows a block diagram of this chip. TheProcessor
Glue Logic is responsible for interpreting colored memory
operations and coprocessor instruction requests. TheCache
Management and Invalidation ControlandMemory Coher-
ence and DRAM Controlblocks comprise, respectively, the
processor and memory portions of the cache coherence
protocol. In addition, both blocks service requests from
the Network Interface and DMA Controlblock, which
provides user-level message passing with locally coherent
DMA [18]. Since the processor and memory sides of the
cache coherence protocol as well as the message-passing
interfaces share the same network queues, message passing
and shared memory are integrated [16].

The Transaction Bufferis a 16-entry, fully associative
data store that tracks outstanding cache coherence trans-
actions, holds prefetched data, and stages data in transit
between the cache, network, and memory. It is integrated
closely with the mechanism for removing livelock in the
face of block multithreading [19]. The transaction buffer
is also responsible for making the Alewife coherence pro-

AGARWAL et al.: MIT ALEWIFE MACHINE 433

Fig. 3. Block diagram and floor plan for the CMMU (15 mm� 15 mm).

tocol insensitive to reordering in the network. It does
this by tracking in-progress memory transactions, retain-
ing sufficient processor-side information to reconstruct the
message order intended by a memory node even when
messages arrive at the processing node out of order. Among
other things, this information enables a scheme called
deferred invalidationto untangle misorderings between data
messages and subsequent invalidations—a critical type of
misordering that can lead to incoherence: invalidations
that arrive prematurely when data are expected are simply
deferred until the data arrive. TheRegisters and Statistics
block contains a dedicated cycle counter, a timer, and a
number of statistics facilities. TheNetwork Queues and
Control block contains asynchronous interfaces for the
EMRC network routers.

Fig. 3 also shows a floor plan of the CMMU. This chip
is implemented with three layers of metal in the LEA-
300K hybrid gate-array technology from LSI Logic. Shaded
blocks are standard-cell memories. The rest of the chip is
implemented in a sea-of-gates style; costs for the gate-array
portion of the chip are given in Table 1. In this technology,
an NAND gate is one (1) gate, while a scan flip-flop takes
nine (9) gates.

C. Programming Model

Although the fast-message capability of Alewife makes
it a good vehicle for executing programs written in a
message-passing style, it is better viewed by the program-
mer as a shared-memory machine. The Alewife hardware
mechanisms, including fast messages, are combined in
support of the shared-memory programming model. To
facilitate programming, Alewife provides tools that inform
programmers when poor performance is caused by widely
shared data objects, and which parts of the application are

Table 1
Functional Block Sizes (in Gates) for the Alewife CMMU, as
Well as Contributions to Shared Memory (SM), Message
Passing (MP), Latency Tolerance (LT), and Fine-Grain
Synchronization (FG) [Total Chip Resources: 100 Kgates and 100
Kbits of Static Random Access Memory (SRAM)]

affected. Programmers can then fine tune performance by
using the direct message-passing interface integrated with
shared memory.

Alewife has compilers for a parallel version of ANSI
C and a parallel version of LISP called Mul-T [15]. For
parallel C, Alewife supports the library from Argonne
National Laboratory as well as parallel loops and distributed
arrays. Automatic partitioning can be used when a program
uses parallel loops and arrays [1].

Parallelism in Mul-T is specified with the con-
struct. Low thread creation overhead is achieved using lazy
task creation [24], a method for dynamic partitioning and
load balancing. The Alewife run-time system includes a
parallel stop-and-copy garbage collector.

D. Alewife Debugging and Tuning

Alewife provides a number of facilities to aid in program
debugging and performance tuning. An Alewife version of

434 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 3, MARCH 1999

Fig. 4. A hardware directory entry in Alewife.

GNU debugger (GDB) allows symbolic program debug-
ging, complete with the ability to set break points, examine
data and registers on individual nodes, and inspect threads,
both active and blocked.

The programmer can make use of two distinct facilities in
Alewife for performance debugging. First, the LimitLESS
cache coherence mechanism can be configured to collect
information about which memory locations are being shared
and accessed in a pattern that causes poor performance. A
tool is available that traces errant memory behavior directly
to source variables.

Second, the Alewife CMMU provides extensive facilities
for performance monitoring. Four 32-bit statistics counters
and a histogram array can be configured to measure a
wide variety of hardware events: examples include cache
hits and misses, instruction counts, and network throughput
statistics. A graphical interface allows users to specify a
set of statistics and displays static and dynamic views of
the results.

III. M ECHANISMS AND MICROBENCHMARKS

This section describes the implementation of the mecha-
nisms introduced in Section I. It presents the cost and the
raw performance of each of the mechanisms in isolation.

A. DSM

The Alewife machine provides hardware support for
distributed, cache-coherent shared memory. Cache lines
in Alewife are 16 bytes in size and are kept coherent
through a software-extended scheme called LimitLESS
[9], [10]. This scheme implements a full-map directory
protocol by supporting up to five readers per memory line
directly in hardware and by trapping into software for more
widely shared data. Consequently, LimitLESS involves
a close interaction between hardware and software. The
hardware invokes software handling for remote requests
by making use of the Alewife message-passing interface:
faulted coherence requests are forwarded to the processor in
the same way as any other message. The queuing inherent
in the message-passing interface permits multiple pending
LimitLESS coherence requests.

Shared memory is distributed, in the sense that the
shared address space is physically partitioned among nodes.
Each 16-byte memory line has a home node that contains
storage for its data and coherence directory. All coherence
operations for a given memory line, whether handled by
hardware or software, are coordinated by its home node.
Each Alewife node contains the data and coherence direc-
tories for a 4-Mbyte portion of shared memory.

The Alewife directory entry format is shown in Fig. 4.
Directories are 64-bits wide and are stored in off-chip
DRAM. Each entry contains five 9-bit pointers, two bits
of state, two bits of metastate, and four full/empty bits
(one for each word in the line). The Local Bit provides
an optimization which guarantees that the local node can
always acquire a pointer. The Pointers In Use field indicates
the number of other pointers that are in use. The number
of pointers available to the hardware may be adjusted
from two to five with the Pointers Available field. Since
the Pointers In Use field can be set by software, the
cost of the LimitLESS read handler is amortized over up
to six different read requests: when invoked to handle a
read request, the handler resets the Pointers In Use field,
allowing the next five requests to be handled without
software intervention.

Sparcle employs a single-ported, unified first-level cache,
with no on-chip instruction cache. Consequently, 32-bit
loads and stores that hit in the cache take tow and three
cycles, respectively, (one cycle for the instruction fetch).
Doubleword (64-bit) loads and stores that hit in the cache
take one additional cycle.

Table 2 shows the cost incurred when memory references
miss in the cache. These values were obtained with a
sequence of experiments run on an otherwise idle Alewife
system. All remote misses or invalidations are between
adjacent nodes. Each additional “hop” of communication
distance increases these latencies by approximately 1.6
cycles.

For a simple load miss to remote memory handled in
hardware, 58% of the 38-cycle miss penalty is due to net-
work latency (1.1 out of 1.9 s). Roughly three-quarters of
the network latency is time spent transferring flow-control
units (flits) between the CMMU and the interconnection

AGARWAL et al.: MIT ALEWIFE MACHINE 435

Table 2
Typical Shared Memory Miss Penalties

Table 3
Rough Breakdown of 38-Cycle Clean
Read-Miss to Neighboring Node

network (36 flits at 22.5 ns/flit). Table 3 gives a breakdown
of the various latencies involved in satisfying a remote
read-miss.

Misses handled in software represent the access time seen
when a cache line is shared more widely than is supported
in hardware (five pointers), so that the home node processor
must be interrupted to service the request. In the case of a
load, the software time represents the maximum throughput
available when every request requires software servicing.
Because of the read-ahead optimization and amortized read
handling, this latency number will rarely be experienced by
a requesting node. The software store latency represents an
actual latency seen by a writer; it includes the time required
for the software handler to send six invalidations, for these
invalidations to be received by the hardware, and for an
exclusive copy to be returned.

B. Message Passing

Message passing is both a crucial component of the
LimitLESS cache coherence protocol and a mechanism
to be used in cooperation with software-extended shared
memory. Some communication operations, such as file I/O,
remote task dispatch, and the inner loops of typical scien-
tific codes, can often be implemented more efficiently with
message passing than with shared memory. Further, since
Alewife provides a protected user-level message-passing
interface, compilation targets such as active messages [32]
are naturally supported.

Messages in Alewife are sent through a two phase
process: firstdescribe, thenlaunch. A message is described
by writing directly to an output descriptor array with a

Fig. 5. Machine code implementing a message send. In addition
to the required header, this message includes one explicit data
word, and one block of data from memory.

colored store instruction called . The output descriptor
array consists of 16 memory-mapped network registers in
the CMMU. Writes into this array incur the same cost as
write hits in the cache. Once a message is described, it
is launched via an atomic, single-cycle instruction called

. This two-phase process permits direct, user-
level access to the network queues.

Fig. 5 illustrates code for launching a message that con-
sists of a header, one word of data from a register, and a
block of data from memory (to be transferred via DMA).
The , , , and are aliases
for arbitrary Sparcle registers. On entry to this code se-
quence, contains the packet header,
contains the word of data, points to the start of
the data block, and gives the number of double-
words in the data block. This packet descriptor is two
double-words long and contains one double-word of explicit
data (and). Alewife maintains local
coherence for the data block specified by and

: data are acquired from the local cache at the source
and invalidated from the local cache at the destination.

When a message arrives at its destination, it typically
causes an interrupt. The CMMU overlaps message arrival
with interrupt processing by posting the interrupt as soon as
it has received the header of a message. Since the operating
system reserves one of the four Sparcle hardware contexts
for message processing (as in [26] and [29]), no register
saves or restores are necessary. The first 16 words of an
incoming message are presented in the memory-mapped
input packet array. Consequently, an interrupt handler may
either load words directly from this array via the
instruction, or initiate a DMA sequence to store the message
into memory.

The Alewife message-passing interface has low overhead.
A simple, two-word message (one header, one data word),
can be transmitted with three instructions, or seven cycles.
Message reception can use polling or interrupts. The cost
of reception is more expensive when an interrupt must be
fielded at the receiving end. Using interrupts, a system-
level handler for a two-word message can be entered in
approximately 35 cycles. This time includes reading the
message from the network, dispatching on an opcode in the
header, and setting up for a general call to handler routines
written in C.

Adding user-level message protection increases this entry
time by another 15 cycles to approximately 50 cycles. A
null user-level message handler requires a total of 95 cycles.
Much of this time is associated with saving and restoring

436 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 3, MARCH 1999

Table 4
Examples of Alewife’s Data-Access Instructions

the system-level timer (to time out an errant user-level
handler and prevent a user from locking up the machine),
preventing access to shared memory before the current
message has been removed from the queue, and checking
for user-requested atomicity. Simple modifications to the
CMMU can combine these three functions into a single
mechanism and reduce the overhead of protected message
passing considerably.

Measurements of Alewife’s mesh network show that each
channel provides a peak bandwidth of approximately 356
Mbits/s (22.5 ns per 8-bit flow-control unit). For a 16-node
machine, this rate yields a maximum possible bisection
bandwidth of 2.8 Gbits/s.

C. Fine-Grain Synchronization

The primary advantage of fine-grain synchronization is
that more parallelism can be exposed to the underlying
hardware or software system than if coarse-grain synchro-
nization techniques, such as barriers, were employed. For
example, a thread synchronizing at a barrier has to wait
for the arrival of all other synchronizing threads before
proceeding, regardless of whether that thread depends on
results computed by the other threads. By synchronizing
on exactly the data words to be consumed, fine-grain
synchronization eliminates false dependencies and allows a
thread to proceed as soon as the data it needs are available.

The Alewife machine provides both hardware and soft-
ware support for fine-grain synchronization. Hardware sup-
port consists of a full/empty bit [31] for each 32-bit
data word. To access these bits, colored load and store
instructions are provided that perform full/empty test-and-
set operations. Table 4 presents a sample of Alewife data-
access instructions. All of these instructions return the
original full/empty bit in the coprocessor status word. Two
Sparcle instructions, (branch on empty) and
(branch on full), can then be used to examine this bit.

In Alewife, the odd data width introduced by full/empty
bits does not impact DRAM, cache, or network data widths.
At memory side, full/empty bits are stored in the bottom
four bits of the coherence directory entry (see Fig. 4). At
cache side, they are stored as an extra field in the cache
tags. In data packets, they are transmitted in the bottom
four bits of the address and take advantage of the 16-byte
cache-line width.

The system provides several language extensions for
fine-grain synchronization in the form of J-structures and
L-structures. Patterned after I-structures [7], J-structures
support producer–consumer style synchronization on vector

Table 5
Costs in Cycles of Fine-Grain, Producer–Consumer
Synchronization In Alewife (“hw” Represents the
Use of Full Hardware Support; “sw” Represents
Explicit Checking in Software)

elements, with full/empty bits associated with each vector
element. A J-structure read waits until the element is
full before returning its value. A J-structure write updates
the element and sets it to full. An L-structure supports
mutual-exclusion style synchronization on vector elements
with full/empty bits associated with each vector element.
L-structures support three operations: a locking read; an
unlocking write; and a nonlocking read.

Table 5 compares the costs (in cycles) of implementing
J-structure read and write operations, with and without
hardware support. The hardware implementation (hw) relies
on traps to signal a failed read and uses a separate,
centralized waiting queue. It allows successful reads and
writes to proceed at the speed of normal Sparcle loads
and stores. The software-based implementation (sw) uses
an additional memory word to emulate a full/empty bit for
each J-structure element.

D. Latency Tolerance

Latency tolerance in Alewife takes two forms: block mul-
tithreading and nonbinding software prefetching. By sup-
porting both block multithreading and prefetching, Alewife
provides a platform for directly comparing these two la-
tency tolerance mechanisms.

Three different mechanisms in the Alewife CMMU help
support block multithreading. First, the CMMU takes ad-
vantage of as much parallelism as possible when servicing
a remote cache miss by generating a context-switch trap in
parallel with message generation. Second, the CMMU im-
plements lockup-free caches. Third, the CMMU implements
a livelock avoidance technique to prevent the livelock that
can arise when cache-coherent shared memory is coupled
with context switching and LimitLESS.

Software prefetch is implemented in Alewife as two
different colored load instructions, one for read prefetch
and the other for write prefetch; the value returned from the
prefetch instructions is ignored. Prefetched data are returned
in the transaction buffer.

To measure the benefit of latency tolerance using context
switching and prefetching, an experiment runs a small
loop on one processor that adds numbers fetched from the
memory of another processor. Fig. 6 shows the number of
cycles per loop iteration as a function of the number of
outstanding requests. As expected, one outstanding request
incurs the same overhead using either prefetching or context
switching. As the prefetch depth is increased, the perfor-
mance improves until the limit of network bandwidth is

AGARWAL et al.: MIT ALEWIFE MACHINE 437

Fig. 6. Effectiveness of latency tolerance mechanisms.

reached. For context switching, the limiting factor is the
overhead of the mechanism, not bandwidth. Because the
loop performs remote reads which have a relatively low
latency (40 cycles), the 14-cycle context switch time hides
all of the latency with two contexts. For longer remote
latencies that can occur in real programs, three contexts
may be beneficial.

Although the absolute performance of prefetching is
better due to low overhead, its use is limited to places
where cache-miss behavior can be predicted statically.
Results in Section IV show that context switching can
increase the performance of a parallel application, even
when prefetching has been carefully used.

IV. A PPLICATION PERFORMANCE

This section presents the performance of a number of ap-
plications and demonstrates the efficacy of the mechanisms
in the machine. It starts by summarizing the performance
of a dozen applications written in a shared-memory style.
Section IV-A presents details of an application case study
using MP3D. Section IV-C uses EM3D to compare the
relative benefits of shared memory and message passing.

A. DSM Performance

Shared-memory applications perform well on Alewife,
proving the viability of both the software-extended coher-
ence mechanism and the low-dimensional communication
substrate provided by the mesh network. Table 6 summa-
rizes the main characteristics of the applications evaluated
on Alewife. The first five applications shown in the table
are from the SPLASH suite [30], the three following ones
are from the NAS parallel benchmarks [8], the next four
are engineering kernels, and the last solves a numerical
problem.

Table 7 presents the running time and speedup perfor-
mance of these applications on Alewife. The table includes

Table 6
Main Application Characteristics

results for “Mod MP3D,” which is a version of the original
MP3D application that eliminates some useless code and
improves locality by modifying the mapping of particles
to processors. Section IV-B discusses both the original and
modified versions of MP3D in detail.

All the speedups presented in Table 7 are based on
the parallel implementation of each program running on
one processor except those that are marked in the table
with asterisks and the different versions of MICCG3D.
These exceptions ran with input sizes that do not fit on
a single node’s memory.1 The experiments with an asterisk
assume that the speedup is linear at the smallest number of
nodes that can hold the data set. The MICCG3D speedups
are computed using a best sequential running time that is
obtained by assuming that sequential running time grows
linearly with problem size. The Alewife compiler, used for
all applications, produces code with a sequential running
time that is within 10% of at the “ ” level of
optimization.

The results show that Alewife usually achieves good
application performance, especially for the computational
kernels, even for relatively small input sizes. In particu-
lar, MP3D (an application with a difficult shared-memory
work load) achieves extremely good results. In contrast, a
comparison between the two entries for Cholesky in the
table demonstrates the importance of the input size for
the performance of this application; a fivefold input size
increase leads to a significant improvement in speedup.
The modest speedups of CG and Multigrid result from
load imbalance and bad cache behavior, which can be
addressed by using larger input sizes and the latency
tolerance mechanisms in Alewife.

Table 7 presents the performance of the 3232 32 and
64 64 64 input sizes for MICCG3D (labeled MICCG3D-
32 and MICCG3D-64, respectively) using coarse-grain and
fine-grain synchronization. The speedups appear low be-
cause they are measured against the best sequential im-
plementation of the application, rather than a uniprocessor
run of the parallel algorithm. Versions of MICCG3D using
fine-grain synchronization perform significantly better than
those using coarse-grain synchronization. We observed that

1Barnes–Hut was run with 32k bodies as input, while Cholesky was
run with five times as many nonzeros as the base input size.

438 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 3, MARCH 1999

Table 7
Performance of Shared-Memory Applications on Alewife

the ability to express synchronization at a fine granularity
has a first-order impact on performance for the MICCG3D
application [33]; providing support for the fine-grain syn-
chronization primitives in hardware is a second-order effect.

As a whole, experience with porting a variety of applica-
tions in a short period of time shows that Alewife provides
a good environment for applications written in a shared-
memory style. Programs can be easily ported to the machine
and usually achieve good performance.

B. MP3D

On Alewife, MP3D achieves the largest reported speedup
for this application. There are two reasons for this result.
First, most of the communication traffic in the benchmark is
caused by migratory data, and Alewife’s coherence protocol
is optimized for this type of data. Second, Alewife has
relatively low (60-cycle) latency for three-party remote
read transactions, which results from Alewife’s pipelined
memory system and its simple, flat network hierarchy. This
low latency pays off when the whole hierarchy must be
traversed frequently.

MP3D also serves as a good vehicle for assessing the
performance of Alewife’s latency tolerance mechanisms.
The original MP3D code is a good candidate for latency
tolerance, since improvements in locality for this program
are difficult to obtain without significant code restructuring.
Accordingly, this section considers the effect of using
multiple contexts, software prefetching, and a combination
of these two. Fig. 7 presents the speedups of different
versions of MP3D. All speedups in this graph are computed
with respect to the nonprefetching parallel implementation
running on one processor.

In order to investigate the maximum possible benefit of
prefetching, software prefetching was inserted by hand. The
prefetch instructions concentrate on the data causing the
majority of the cache misses in MP3D. As seen in Fig. 7,

Fig. 7. Speedups for various versions of MP3D: single-context
(1C); two contexts (2C); and prefetching (PF).

prefetching achieves a 23% improvement in speedup at 32
processors over the nonprefetching version.

Block multithreading allows MP3D to perform margin-
ally better than hand-crafted software prefetching (26 versus
23%), proving that context switching can help applications
achieve performance comparable to versions generated by
sophisticated compilers and/or programmers. An interesting
observation is that the combination of prefetching and
multithreading for MP3D approaches the speedup perfor-
mance of the hand-optimized version of the application,
Mod MP3D (see Table 7). One possible explanation for
this effect is that multithreading can tolerate the latency
of replacement cache misses, which are difficult to predict
when implementing software prefetching.

Fig. 8 presents the cost breakdown (measured by the
Alewife statistics hardware) for MP3D and Mod MP3D

AGARWAL et al.: MIT ALEWIFE MACHINE 439

Fig. 8. Orig and Mod MP3D running times, with costs.

for eight, 16, and 32 processors. As shown in this figure,
Mod MP3D significantly reduces both the busy time and
the memory wait overhead of MP3D. Another interesting
observation is that the overhead of handling widely shared
cache blocks in software (the LimitLESS component) and
the scheduler costs (the system component) are always
negligible for the two programs. In fact, none of the shared-
memory applications suffer significantly from these two
types of overhead.

C. Message Passing, Shared Memory,
and Network Bandwidth

The debate about the relative merits of shared memory
and message passing has raged between parallel-processing
experts for at least two decades. Because Alewife integrates
user-level shared memory and message passing, the proto-
type offers a unique opportunity for providing some insight
into the tradeoff between these two programming styles. An
important metric for making this tradeoff is network band-
width: if the processor interconnection fabric can deliver
enough bits per second, DSM is a perfectly fine mechanism
for almost all applications. However, as processing speeds
increase faster than network speeds, programmers must use
message-passing techniques to achieve desired levels of
performance.

Before attempting the comparison between shared mem-
ory and message passing, it is important to verify the
performance of each of the mechanisms independently. The
microbenchmarks in Section III-A and the previous bench-
mark studies certainly argue that Alewife’s implementation
of shared memory is more than adequate for the purpose.
Section III-B and the following case study make a similar
argument for Alewife’s implementation of message passing.

1) Message-Passing Performance:In order to verify that
Alewife provides reasonable message-passing performance,
this case study compares the relative performance of an

Fig. 9. Performance of a message-passing implementation of the
sparse triangular matrix solver.

application running on the Alewife prototype and on the
Thinking Machines’ CM-5, a commercial message-passing
architecture built with contemporary technology. This ap-
plication is a power grid benchmark from a sparse matrix
suite [12] which uses the techniques of [11].

Fig. 9 presents speedups of message-passing implemen-
tations of this application on Alewife and the CM-5.
Speedups are computed based on the execution time (in
cycles) of an optimized sequential code running on a
single CM-5 node. The difference between the two polling
implementations of the machines is 10%, and can be
entirely attributed to the use of an experimental compiler
on Alewife. Additionally, the difference between polling
and interrupt versions on Alewife is only 16%. In contrast,
the interrupt-driven version of this application on the CM-
5 suffers more than a factor of three degradation over the
polling version.

In summary, Alewife’s base performance is comparable
to the CM5 when polling is used. However, Alewife’s
uniqueness stems from its special support for mechanisms
such as interrupt-driven messages, whose performance is
much better than that of commercial machines. Interrupt-
driven message delivery enables a program running on a
node to be unaware of when messages are processed by the
local node. In contrast, polling requires that the programmer
be aware of when messages might need to be processed and
ensure that the network is polled frequently enough to allow
the messages to be serviced promptly, or else suffer poor
performance or even deadlock [14]. Placing this additional
burden on programmers has a negative impact on the ease
of use of the message passing programming model.

2) Comparing Communication Volumes:Having vali-
dated shared memory and message passing independently,
the next step is to compare their relative merits. Although
shared-memory applications in Alewife leverage the
messaging mechanisms through their run-time system,
applications written in the message-passing style exploit

440 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 3, MARCH 1999

Fig. 10. Breakdown of communication volume per processor
node for each communication mechanism.

Alewife’s messaging interface directly. Rewriting the
EM3D benchmark as a message-passing application allows
a direct comparison between these two styles.

In the following analysis, SM indicates the original
EM3D benchmark; PRE-SM indicates a version tuned to
use Alewife’s prefetch mechanism; MP is a message-
passing polling2 version; and BULK is a message-
passing version that uses Alewife’s bulk data-transfer
mechanism. Fig. 10 shows that the average communication
volume—the amount of data injected into the network over
the course of an execution—is three to four times higher
for the shared memory version of EM3D than the message-
passing version. Bulk transfer further reduces the volume
by saving on message headers.

Where message passing uses a single message to com-
municate a value along each edge of a graph problem,
shared memory (using an invalidation protocol) must use
at least four: the writer must invalidate the reader’s copy,
the reader acknowledges the invalidate, the reader later
requests a valid copy, and the write responds with valid
copy. Additional messages may be required if the writer
must invalidate cached copies on more than one reader. Ad-
ditional traffic is generated when spin locks are necessary to
enforce atomic read-modify-writes. While a shared-memory
protocol with optimizations for update transactions might
reduce the communication volume, such protocols still
require at least twice as many messages as optimal message-
passing codes. Similarly, prefetching can reduce average
memory-access latency, but the mechanism almost always
increases communication volume.

3) Bisection Bandwidth Emulation:While communica-
tion volume measurements are important, the bottom line
of DSM performance is application execution time, not

2Since polling performs slightly better than interrupts and communica-
tion volume is similar for this application, interrupts are omitted.

Fig. 11. Execution time (in cycles) on a 32-node system versus
bisection bandwidth. Alewife is at 18 bytes/processor-cycle.

network usage. Since the Alewife prototype provides
more than adequate interprocessor bandwidth for most
applications—including EM3D—shared memory remains
the mechanism of choice. However, the current prototype
is only one point in a design spectrum. Since it was built,
increases in processor speed have dramatically outstripped
network transfer rates.

To investigate the effects caused by lower network speed,
it is possible to reduce the Alewife prototype’s available
network bandwidth artificially. Background cross traffic,
generated by the I/O nodes shown in Fig. 1, lowers the
effective bandwidth without directly changing the behavior
of an application running on the compute nodes. The
bisection bandwidth of the emulated system is calculated
by taking Alewife’s maximum (18 bytes per processor
cycle) and subtracting the amount of cross traffic sent.
Experimental factors (such as the size of the cross-traffic
messages) limit the minimum effective bisection bandwidth
to 4 bytes per processor cycle.

Fig. 11 plots EM3D performance on a 32-node system
as the amount of I/O cross traffic varies. Theaxis plots
bisection bandwidth in bytes per processor cycle. The
axis plots application run time in processor-cycles. The data
points on the right side of the graph indicate the baseline
performance of Alewife: even the basic shared-memory ver-
sion of EM3D performs as well as the optimized message-
passing version. Given the increases in processor speed
since the prototype was built, only the most expensive DSM
systems in the future will have bisection bandwidths closer
to the left side of the graph. In this regime, only heroic
latency-tolerance techniques (like hand-optimized prefetch-
ing or possibly multithreading) allow shared memory to
achieve the performance of message passing.

As is the case with most religious debates, the answer
depends on the point of view. In this case, the relative
merits of shared memory versus message passing depend

AGARWAL et al.: MIT ALEWIFE MACHINE 441

on applications’ use of communication resources. The best
architectural solution to this dilemma is to integrate both
mechanisms together, allowing programmers to choose the
appropriate model of parallel computation for their own
applications.

V. RELATED WORK

A number of other systems provide a shared address
space entirely in hardware. DASH [22] is a cache-coherent
multiprocessor that uses a full-map directory-based cache
coherence protocol. It includes prefetching and a mech-
anism for depositing data directly in another processor’s
cache. The KSR1 and DDM [13] provide a shared address
space through cache-only memory. These machines also
allow prefetching. The Scalable Coherent Interface [6]
also specifies mechanisms for implementing large shared
address spaces.

Both the J-machine [26] and the CM-5 export hardware
message-passing interfaces directly to the user. These in-
terfaces differ from the Alewife interface in several ways.
First, in Alewife, messages are normally delivered via
an interrupt and dispatched in software, while in the J-
machine, messages are queued and dispatched in sequence
by the hardware. On the CM-5, message delivery through
interrupts is expensive enough that polling is normally used
to access the network. Second, neither the J-machine, nor
the CM-5 allow network messages to be transferred through
DMA. Third, the J-machine does not provide an atomic
message send like Alewife does; this omission complicates
the sharing of a single network interface between user code
and interrupt handlers.

The Cray T3D integrates message passing and hardware
support for a shared address space. Message passing in the
T3D is flexible and includes extensive support for DMA.
However, the T3D does not provide cache coherence.

Several subsequent architectures are based on the inte-
gration of shared memory and message passing in some
form. FLASH [21] includes a microcoded, kernel-level
coprocessor for message handling including shared-memory
protocol messages. Bulk transfers in FLASH avoid using
the receiving processor, but require prenegotiating memory
allocation. FLASH provides a multi-user environment. Ty-
phoon [28] offers user-level message handling and cache
coherence, using a second processor dedicated to the net-
work interface. The *T [25] architecture uses a memory
coprocessor model as well.

A few architectures incorporate multiple contexts, pi-
oneered by the HEP [31], switching on every instruc-
tion. These machines, including Monsoon [27] and Tera
[5], do not have caches and rely on a large number
of contexts to hide remote memory latency. In contrast,
Alewife’s block multithreading technique switches only on
synchronization faults and cache misses to remote memory,
permitting good single-thread performance and requiring
less aggressive hardware multithreading support. A number
of architectures—including HEP, Tera, Monsoon, and the
J-machine—also provide support for fine-grain synchro-
nization in the form of full/empty bits or tags.

VI. CONCLUSION

As one of the first examples of a truly scalable DSM,
Alewife represents a step in the maturation of multipro-
cessing technology. Specifically, it augurs the end of the
religious war between proponents of the shared-memory
and message-passing models of parallel computation. The
working machine demonstrates that both models permit
efficient and scalable implementations; moreover, the two
models may—and should—be integrated into a unified mul-
timodel framework. Shared memory is easy to program and
performs better than message passing when machines have
a high ratio of communication bandwidth to processing
speed. Message passing, on the other hand, performs better
when the machines are upgraded with faster processors,
resulting in a lower ratio of communication bandwidth
to processing speed. Although previous systems have im-
plemented some of Alewife’s mechanisms independently,
Alewife is unique in its combination of coherent caches
for shared memory, integrated message passing, support for
fine-grained computation, and latency tolerance. These four
mechanisms provide an integrated solution to the problems
of communication and synchronization in parallel systems.

This integration of architectural features results in a
multiprocessor that is both programmable and scalable.
The case study using the MP3D application illustrates this
conclusion: it was easy to port this demanding workload
to the architecture, and the application worked and realized
acceptable speedups almost immediately. Subsequent per-
formance tuning and invoking Alewife’s latency tolerance
mechanisms significantly improved MP3D’s performance.

Experience with a variety of other workloads confirms
this anecdotal evidence. More broadly, experience with
applications indicates that a globally shared address space,
cache coherence, and a message-based run-time system is
instrumental in the quick development of working appli-
cations that perform well. Latency tolerance mechanisms,
fine-grain synchronization, and explicit message passing
help improve performance further.

Although Alewife addresses many of the issues of large-
scale multiprocessing, it is essentially a single-user ma-
chine. Our recent work has investigated mechanisms for
protection and virtual memory in multiprocessors that sup-
port fast messaging. Implementing a virtual machine model
is challenging because features such as multiprogramming
and demand paging tend to interfere with streamlined,
tightly-coupled communication. Our FUGU architecture
[23] embodies an optimistic approach to message passing
in a virtual machine: each application has direct access
to a simple, fast, Alewife-like network interface unless
immediate conditions (detected in hardware) dictate oth-
erwise. Operating system software maintains the fiction of
a virtual machine by transparently buffering messages in
virtual memory when required.

We have also investigated the use of clustered DSM’s to
construct massively parallel processors (MPP’s). Packag-
ing constraints and low-volume demand significantly raise
the cost of MPP’s. Alternatively, the economy of high-

442 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 3, MARCH 1999

volume production provides a cost-performance advantage
to MPP’s built out of smaller-scale DSM’s. The multigrain
shared memory (MGS) project [34] investigates building
MPP’s by coupling multiple Alewife-like DSM’s by a local
area network using a page-based software DSM protocol
to maintain coherence over the network. Early experience
demonstrates that effectively exploiting multigrain sharing
leads to performance on cost-effective clustered MPP’s
that is comparable to the high performance attained on
monolithic all-hardware MPP’s.

ACKNOWLEDGMENT

The following members of the Alewife team contributed
significantly to the success of the project: J. Babb, R. Barua,
D. Hoki, E. Hurley, G. Maa, A. McCarthy, S. Mitra, D.
Nussbaum, and J. Piscitello.

Others outside of MIT contributed as well: the authors
would like to thank M. Marchetti for the multigrid code,
and L. Kontothanassis for the FFT code and for assistance
with writing Mod MP3D. The Alewife machine was built
in cooperation with LSI Logic, Inc., Sun Microsystems,
Inc., and the Information Sciences Institute at University of
Southern California.

REFERENCES

[1] A. Agarwal, D. Kranz, and V. Natarajan, “Automatic parti-
tioning of parallel loops for cache-coherent multiprocessors,”
in Proc. 22nd Int. Conf. Parallel Processing, Aug. 1993, pp.
943–962.

[2] A. Agarwal, J. Kubiatowicz, D. Kranz, B. H. Lim, D. Yeung, G.
D’Souza, and M. Parkin, “Sparcle: An Evolutionary Processor
Design for Multiprocessors,”IEEE Micro, vol. 13, pp. 48–61,
June 1993.

[3] A. Agarwal, B. H. Lim, D. Kranz, and J. Kubiatowicz,
“APRIL: A processor architecture for multiprocessing,” in
Proc. 17th Annu. Int. Symp. Computer Architecture,June 1990,
pp. 104–114.

[4] A. Agarwal, D. Chaiken, G. D’Souza, K. Johnson, D. Kranz, J.
Kubiatowicz, K. Kurihara, B.-H. Lim, G. Maa, D. Nussbaum,
M. Parkin, and D. Yeung, “The MIT Alewife machine: A large-
scale distributed-memory multiprocessor,” inProc. Workshop
Scalable Shared Memory Multiprocessors., 1991; also appears
as MIT/LCS Memo TM-454, 1991.

[5] G. Alverson, R. Alverson, and D. Callahan, “Exploiting het-
erogeneous parallelism on a multithreaded multiprocessor,” in
Proc. Int. Conf. Supercomputing, July 1992, pp. 188–197.

[6] Scalable Coherent Interface, ANSI/IEEE standard 1596-1992,
1992.

[7] Arvind, R. Nikhil, and K. Pingali, “I-Structures: Data structures
for parallel computing,”ACM Trans. Programming Languages
Syst.,vol. 11, no. 4, pp. 598–632, Oct. 1989.

[8] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L.
Dagum, R. Fatoohi, S. Fineberg, P. Fredrickson, T. Lasinki, R.
Schreiber, H. P. Simon, V. Venkatakrishnan, and S. Weeratunga,
“The NAS parallel benchmarks,” NASA Ames Research Cen-
ter, Moffett Field, CA, Tech. Rep. RNR-94-007, Mar. 1994.

[9] D. Chaiken and A. Agarwal, “Software-Extended coherent
shared memory: Performance and cost,” inProc. 21st Annu.
Int. Symp. Computer Architecture,Apr. 1994, pp. 314–324.

[10] D. Chaiken, J. Kubiatowicz, and A. Agarwal, “LimitLESS
directories: A scalable cache coherence scheme,” inProc. 4th
Int. Conf. Architectural Support for Programming Languages
and Operating Systems,Apr. 1991, pp. 224–234.

[11] F. T. Chong, S. D. Sharma, E. A. Brewer, and J. Saltz,
“Multiprocessor runtime support for irregular DAG’s,”Parallel
Processing Lett. (Special Issue Partitioning Scheduling Parallel
Distrib. Syst.), pp. 671–683, Dec. 1995.

[12] I. Duff, R. Grimes, and J. Lewis, “User’s guide for the Har-
well–Boeing sparse matrix collection,” CERFACS, Tech. Rep.
TR/PA/92/86, Oct. 1992.

[13] E. Hagersten, A. Landin, and S. Haridi, “DDM–A cache-only
memory architecture,”IEEE Comput.,vol. 25, pp. 44–54, Sept.
1992.

[14] K. Johnson, “High-performance all software distributed shared
memory,” Ph.D. dissertation, Dep. Elect. Eng. Comput. Sci.,
Massachusetts Inst. Technol., Cambridge, Nov. 1995.

[15] D. Kranz, R. Halstead, and E. Mohr, “Mul-T: A high-
performance parallel lisp,” inProc. Symp. Programming
Languages Design and Implementation,June 1989, pp. 81–90.

[16] D. Kranz, K. Johnson, A. Agarwal, J. Kubiatowicz, and B. H.
Lim, “Integrating message-passing and shared-memory; Early
experience,” inProc. 4th Annu. Symp. Principles and Practice
of Parallel Programming,May 1993, pp. 54–63.

[17] D. Kroft, “Lockup-Free instruction fetch/prefetch cache organ-
ization,” in Proc. 8th Annu. Symp. Computer Architecture,June
1981, pp. 81–87.

[18] J. Kubiatowicz and A. Agarwal, “Anatomy of a message in the
alewife multiprocessor,” inProc. Int. Conf. Supercomputing,
July 1993, pp. 95–106.

[19] J. Kubiatowicz, D. Chaiken, and A. Agarwal, “Closing the
window of vulnerability in multiphase memory transactions,”
in Proc. 5th Int. Conf. Architectural Support for Programming
Languages and Operating Systems,Oct. 1992, pp. 274–284.

[20] J. Kubiatowicz, D. Chaiken, A. Agarwal, A. Altman, J. Babb,
D. Kranz, B. H. Lim, K. Mackenzie, J. Piscitello, and D.
Yeung, “The Alewife CMMU: Addressing the multiprocessor
communications gap,”HOTCHIPS,Aug. 1994.

[21] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K.
Gharachorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz,
A. Gupta, M. Rosenblum, and J. Hennessy, “The Stanford
FLASH multiprocessor,” inProc. 21st Annu. Int. Symp. Com-
puter Architecture 1994,Apr. 1994, pp. 302–313.

[22] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A.
Gupta, and J. Hennessy, “The DASH prototype: Logic overhead
and performance,”IEEE Trans. Parallel Distrib. Syst.,vol. 4,
pp. 41–61, Jan 1993.

[23] K. Mackenzie, J. Kubiatowicz, M. Frank, W. Lee, V. Lee,
A. Agarwal, and M. Frans Kaashoek, “UDM: User direct
messaging for general-purpose multiprocessing,” Massachusetts
Inst. Technol., Cambridge, Tech. Memo MIT/LCS/TM-556,
Mar. 1996.

[24] E. Mohr, D. Kranz, and R. Halstead, “Lazy task creation: A
technique for increasing the granularity of parallel programs,”
IEEE Trans. Parallel Distrib. Syst.,vol. 2, pp. 264–280, July
1991.

[25] R. Nikhil, G. Papadopoulos, and Arvind, “*T: A multithreaded
massively parallel architecture,” inProc. 19th Annu. Int. Symp.
Computer Architecture,May 1992, pp. 156–167.

[26] M. Noakes, D. Wallach, and W. Dally, “The J-Machine multi-
computer: An architectural evaluation,” inProc. 20th Annu. Int.
Symp. Computer Architecture,May 1993, pp. 224–235.

[27] G. Papadopoulos and D. Culler, “Monsoon: An explicit token-
store architecture,” inProc. 17th Annu. Int. Symp. Computer
Architecture,June 1990, pp. 82–91.

[28] S. Reinhardt, J. Larus, and D. Wood, “Tempest and typhoon:
User-Level shared memory,” inProc. 21st Annu. Int. Symp.
Computer Architecture,Apr. 1994, pp. 325–336.

[29] C. Seitz, N. Boden, J. Seizovic, and W. K. Su, “The design
of the caltech mosaic C multicomputer,” inResearch on In-
tegrated Systems Symposium Proceedings.Cambridge, MA:
MIT Press, 1993, pp. 1–22.

[30] J. P. Singh, W.-D. Weber, and A. Gupta, “SPLASH: Stanford
parallel applications for shared-memory,”Comput. Architecture
News,vol. 20, no. 1, pp. 5–44, Mar. 1992.

[31] B. J. Smith, “Architecture and applications of the HEP mul-
tiprocessor computer system,”Soc. Photo-Opt. Instrum. Eng.,
vol. 298, pp. 241–248, 1981.

[32] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser,
“Active messages: A mechanism for integrated communication
and computation,” inProc. 19th Annu. Int. Symp. Computer
Architecture,May 1992.

[33] D. Yeung and A. Agarwal. “Experience with fine-grain syn-
chronization in MIMD machines for preconditioned conjugate
gradient,” inProc. 4th Annu. Symp. Principles and Practice of
Parallel Programming,May 1993, pp. 187–197.

[34] D. Yeung, J. Kubiatowicz, and A. Agarwal, “MGS: A multi-
grain shared memory system,” inProc. 23rd Annu. Int. Symp.
Computer Architecture (ISCA’96),May 1996, pp. 44–55.

AGARWAL et al.: MIT ALEWIFE MACHINE 443

Anant Agarwal (Member, IEEE) received the
B.Tech. degree in electrical engineering from the
Indian Institute of Technology, Madras, in 1982
and the M.S. and Ph.D. degrees in electrical en-
gineering from Standford University, Stanford,
CA, in 1984 and 1987, respectively.

He is currently with the Laboratory for Com-
puter Science, Massachusetts Institute of Tech-
nology, Cambridge, as a Professor of Electrical
Engineering and Computer Science. At Stan-
ford, he participated in the MIPS and MISP-

X projects. He led the Alewife project at MIT, which designed and
implemented a large-scale cache-coherent multiprocessor. He currently
codirects the Raw Project, which is developing a new VLSI chip and a
compilation technology to transform high-level applications directly into
raw hardware.

Ricardo Bianchini (Member, IEEE) received the Ph.D. degree in com-
puter science from the University of Rochester, Rochester, NY, in 1995.

Since then, he has been an Assistant Professor at the COPPE Systems
Engineering Department, Federal University of Rio de Janeiro, Brazil. His
research interests include parallel and distributed computing, advanced
operating systems, and parallel computer architecture.

Dr. Bianchini is a member of the ACM and IEEE Computer Societies.

David Chaiken (Member, IEEE) received the
Ph.D. and M.S. degrees from Massachusetts In-
stitute of Technology, Cambridge, and the Sc.B.
degree from Brown University, Providence, RI.

He is a Ringleader at AT&T Labs Menlo
Studio, Menlo Park, CA. Since he graduated
from the Alewife group in 1994, he has been
building information appliances.

Dr. Chaiken is a member of ACM and Sigma
Xi.

Frederic T. Chong (Associate Member, IEEE)
received the Ph.D. degree in electrical engineer-
ing and computer science from Massachusetts
Institute of Technology, Cambridge, in 1996.

He is an Assistant Professor of Computer
Science at the University of California, Davis.
His current research focuses on architectures and
system software for intelligent memory.

Kirk L. Johnson received the Ph.D. degree in
parallel and distributed systems in 1995.

He has since left academia and is currently
working for a startup company in Waltham, MA.

David Kranz received the B.A. degree from Swarthmore College, Swarth-
more, PA, in 1981 and the Ph.D. degree from Yale University, New Haven,
CT, in 1988.

While at Yale University, he worked on high-performance compilers
for Scheme and applicative languages. While a Research Associate at the
Massachusetts Institute of Technology Laboratory for Computer Science,
he was a Software Architect for the Alewife Project with interests in
programming languages design and implementation. In 1998, he joined
Curl Co., Cambridge, MA, to develop an integrated authoring environment
for the Web.

John D. Kubiatowicz received the B.A. degree
in electrical engineering and physics from the
Massachusetts Institute of Technology (MIT),
Cambridge, in 1987. He also received the M.S.
degree in 1993 and the Ph.D. degree in 1998
from MIT in electrical engineering and computer
science.

He is currently an Assistant Professor at the
University of California, Berkeley. In addition
to multiprocessor design, his current interests
include quantum computing, dynamic compila-

tion, and intelligent I/O subsystems.

Beng-Hong Lim (Member, IEEE) received the
Ph.D. degree in electrical engineering and com-
puter science from Massachusetts Institute of
Technology (MIT), Cambridge, in 1994.

While at MIT, he worked on the architecture
and software of the Alewife machine. He is
currently working on a software product at a
startup company in Palo Alto, CA. Previously,
he worked on scalable, reliable multiprocessor
servers at IBM in Yorktown Heights, NY.

Kenneth Mackenzie(Member, IEEE) received the S.B. and S.M. degrees
in 1990 and the Ph.D. degree in 1998 from the Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology
(MIT), Cambridge.

Since January 1998, he has been an Assistant Professor in the College
of Computing, Georgia Institute of Technology, Atlanta. At MIT, he
participated in the Alewife Project and initiated the subsequent Fugu
Project with the goal of reconciling fast multiprocessor communication
with the need for protection and virtualization. His current interests include
network interfaces, single-chip multiprocessors, and dynamic compilation
techniques.

Donald Yeung received the B.S. degree from
Stanford University, Stanford, CA, and the M.S.
and Ph.D. degrees from the Massachusetts Insti-
tute of Technology, Cambridge.

He is currently an Assistant Professor at the
University of Maryland, College Park. His re-
search interests are in the areas of computer ar-
chitecture, performance evaluation of computer
systems, and the interaction between architec-
tures, operating systems, and applications. He is
particularly interested in memory system design

for both uniprocessor and multiprocessor architectures that address the
widening gap between processor and memory performance. Currently, he
is investigating techniques that leverage application-specific information in
order to more efficiently manage data movement in the memory hierarchy.

444 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 3, MARCH 1999

