
The Alewife CMMU: Addressing theMultiprocessor Communications Gap�John Kubiatowicz, David Chaiken, and Anant AgarwalwithArthur Altman, Jonathan Babb, David Kranz, Beng-Hong Lim,Ken Mackenzie, John Piscitello, and Donald YeungLaboratory for Computer ScienceMassachusetts Institute of TechnologyCambridge, MA 02139Company X has just expended 50 engineers over the last three years to produce their latestmicroprocessor. Now what? Well, popular wisdom suggests that they should connect a \bunch"of the micros together with some generic network to form a multiprocessor. This will yield\truly impressive performance" which the marketing department can quantify by multiplyingthe number of processors per box by the stellar MIPS-rating of the new microprocessor. Right?Unlikely. Communication is fundamental to multiprocessing. In fact, the mechanisms forcommunication can make or break the performance of a multiprocessor. Consequently, \trulyimpressive performance" across a wide range of applications can be achieved only with carefuldesign of the communication mechanisms.The Alewife Solution. The Alewife Communications and Memory Management Unit (A-1000 CMMU) provides e�cient, low-overhead communication mechanisms for general-purposelarge-scale multiprocessing. It integrates both message passing and shared memory in a singleuni�ed framework. It can handle system con�gurations up to 512 processors, with each node insuch a system consisting of an A-1000 CMMU, a Sparcle processor[1], an FPU, 64K of cache,8Mb of DRAM, and an MRC network chip. The Sparcle processor is tightly coupled with theA-1000 CMMU[2]; however, this coupling is achieved through minor modi�cations to a standardSPARC implementation. Communications functionality of the A-1000 CMMU includes:� Support for distributed, cache-coherent shared memory via the LimitLESS cache-coherenceprotocol[3]: the A-1000 supports up to �ve hardware pointers per memory line for normaldata sharing and can invoke software interrupt handlers to employ additional pointers.Clean data can be fetched from a neighboring node in 30 cycles.� Support for fast user-level messaging with integrated DMA[4]. A simple message, consist-ing of a header and one data word, can be launched in seven cycles.� Several mechanisms for latency tolerance, including non-binding software prefetch andrapid context switching. A remote cache miss is signaled immediately to the Sparcleprocessor, which can switch to a new context in 14 cycles.�To appear in HOTCHIPS '94. 1



In addition, the A-1000 CMMU includes a number of features for support of a completemultiprocessor system:� A lockup-free cache controller with on-chip cache tags.� A DRAM controller with refresh, ECC detection and correction, and ECC sweep.� An interrupt controller for rapid shu�ing of interrupt priorities.� Asynchronous interface and queueing logic for the Caltech MRC network routers.� An on-chip timer, cycle-counter, and full suite of statistics gathering facilities.� Full support for �ne-grained synchronization. Each 32-bit data word has an associatedFull/Empty bit. A number of atomic actions can be performed on these bits, and they canbe used to invoke traps on synchronization failures.The A-1000 CMMU and companion Sparcle processor are part of a research e�ort to exploremechanisms for multiprocessing; they are not intended as commercial products. For expedience,most of the internal logic of the A-1000 CMMU was implemented with a high-level hardwaresynthesis language (called LES from LSI Logic). As a consequence, �rst silicon for the A-1000CMMU is expected to run no faster than 33Mhz. Fabrication is currently in progress throughLSI Logic.Integrated Coherent Shared Memory and Message Passing. One of the salient aspectsof the A-1000 CMMU is its smooth integration of shared memory and message passing in a singlehardware framework. Shared memory refers to the presence of a global shared address spacewhich all processors can access through load and store instructions. With shared memory,processors communicate by reading and writing to prearranged addresses in the global addressspace. Message passing, on the other hand, refers to the ability to send and receive explicitmessages. It is important to note that the hardware uni�cation of these two communicationmechanisms is natural, since most modern implementations of shared memory make use of anunderlying message passing network.Shared memory provides a convenient abstraction for the expression of algorithms and as atarget of compilation. Many algorithms are best expressed in a shared memory programmingstyle but have irregular communication patterns which are not easily extracted by the compiler.Other algorithms share data at an extremely �ne granularity, such that the software overheadof explicit message passing is prohibitive.Consequently, some hardware support for shared memory is desirable. In the A-1000 CMMU,this includes hardware-managed caches for exploiting temporal and spatial locality within shareddata references. Caches introduce the cache coherence problem, which is eliminated in the A-1000 CMMU via the LimitLESS cache coherence protocol (a unique combination of hardwareand software mechanisms for cache coherence). Hardware support for shared memory in the A-1000 CMMU also includes rapid context switching for latency tolerance: whenever the CMMUinitiates a long-latency operation, such as a remote cache �ll, it signals the Sparcle processorthrough a synchronous trap; the processor can then switch rapidly to another context to beginperforming useful work in another context.While shared memory is advantageous in many situations, it is not always an appropriatecommunication paradigm. There are a number of situations in which direct, point-to-point2



communication through messages is desirable. These situations include operating systems func-tionality such as inter-processor interrupts, fast task dispatch, block I/O, and system-wide syn-chronization. Furthermore, when an application has su�ciently regular communication patterns,the compiler can extract and orchestrate communication through messages; this can be moree�cient than relying on the communications heuristics employed by the cache coherence proto-col.The A-1000 CMMU provides a user-level message passing interface which is tuned for fasttransmission and reception of both short messages (directly from registers) and long messages(including DMA). The e�ciency with with short messages can be constructed is an importantenabling factor in the LimitLESS cache coherence protocol. The two-phase describe-and-commitcommunication interface permits direct, user-level access to network hardware without impedingthe use of this network by the operating system.Hybrid architectures which provide both message passing and shared memory allow thebest of both communications paradigms to be mixed and matched. The Alewife architecture,including the A-1000 CMMU, is one of the �rst to present such a uni�ed hardware framework.Ongoing research is exploring the use of compiler technology to choose an optimal tradeo�between message passing and shared memory.Physical Attributes. The A-1000 CMMU consumes approximately 90,000 gates of randomlogic and 100,000 bits of SRAM. It is implemented in LSI Logic's 300K hybrid gate-array processwith 3 layers of metal; this technology provides standard cells for memory and a sea-of-gatesfor random logic. Built in scan provides visibility to most of the random logic during test; theremainder of the logic as well as the memories are tested through special interfaces. All of thisis packaged in a 299-pin PGA.At the time that this was written, fabrication of the A-1000 CMMU was in progress. Proto-types are expected in April 1994. Packaging for 16 and 128 node Alewife machines is ready.The Alewife project is funded in part by DARPA contract # N00014-87-K-0825, by NSFgrant # MIP-9012773, and by an IBM graduate fellowship. LSI Logic provided support for thefabrication of Sparcle, and partial support for the fabrication of the A-1000 CMMU.References[1] Anant Agarwal, Johnathan Babb, David Chaiken, Godfrey D'Souza, Kirk Johnson, David Kranz,John Kubiatowicz, Beng-Hong Lim, Gino Maa, Ken MacKenzie, Dan Nussbaum, Mike Parkin, andDonald Yeung. Sparcle: Today's Micro for Tomorrow's Multiprocessor. In HOTCHIPS, August 1992.[2] Anant Agarwal, John Kubiatowicz, David Kranz, Beng-Hong Lim, Donald Yeung, Godfrey D'Souza,and Mike Parkin. Sparcle: An Evolutionary Processor Design for Multiprocessors. IEEE Micro,13(3):48{61, June 1993.[3] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS Directories: A Scalable CacheCoherence Scheme. In Fourth International Conference on Architectural Support for ProgrammingLanguages and Operating Systems (ASPLOS IV), pages 224{234. ACM, April 1991.[4] John Kubiatowicz and Anant Agarwal. Anatomy of a Message in the Alewife Multiprocessor. InProceedings of the International Supercomputing Conference (ISC) 1993, Tokyo, Japan, July 1993.IEEE. 3


