
Appears inProceedings of the 13th Annual International Conference on Supercomputing, June 1999.

The Scalability of Multigrain Systems

Donald Yeung
Department of Electrical and Computer Engineering

Institute for Advanced Computer Studies
University of Maryland

College Park, MD 20742

Abstract

Researchers have recently proposed coupling small- to medium-
scale multiprocessors to build large-scale shared memory machines,
known asmultigrain shared memory systems. Multigrain systems
promise low cost because they leverage commodity multiproces-
sor nodes, and high performance because each multiprocessor node
provides fine-grain shared memory mechanisms. Unfortunately,
a quantitative study to evaluate the scalability of multigrain sys-
tems has thus far been lacking. Such scalability studies are difficult
to undertake because of the limited system size that experimental
evaluation can explore.

This paper studies the scalability of multigrain systems using
analysis. The paper proposes a novel methodology for analyzing
program behavior on multigrain systems, calledsynchronization
analysis. Synchronization analysis predicts communication vol-
ume by examining an application’s synchronization behavior, an
effective technique because on software DSMs, actual communi-
cation closely follows synchronization. Then, the paper presents a
performance model that computes end-to-end application runtime
based on an estimated cost for the predicted communication. On
five shared memory applications, the performance model is accu-
rate to within 18% of measured runtime for four applications, and
within 22% for all five. Using the model, the paper conducts an
in-depth study of multigrain system scalability. The paper shows
that for multigrain systems with 512 processors, high performance
can be achieved on four out of our five applications if each multi-
processor node is at least 16-way.

1 Introduction

Recently, researchers have proposed building large-scale distrib-
uted shared memory (DSM) systems by coupling multiple small-
scale shared memory multiprocessors [1, 2, 3, 4, 5]. These sys-
tems combine fine-grain cache-coherence mechanisms supported
in hardware (within a small-scale multiprocessor) and coarse-grain
software page-based mechanisms supported in software (between
small-scale multiprocessors). Because they employ two different

P

C

Network

P

C

P

C

Shared Memory Interconnect

M

P

C

P

C

P

C

Shared Memory Interconnect

M

Figure 1: A multigrain shared memory system is built using small-
scale multiprocessors as DSM nodes. “P” denotes processors, “C”
hardware caches, and “M” physical memory modules on each DSM
node.

coherence units (both cache-lines and pages), these systems have
been referred to asmultigrain shared memory systems[5].

Figure 1 shows the architecture of a multigrain shared memory
system. Like any conventional DSM, a multigrain system consists
of a collection of nodes connected over a network. Each node is a
shared memory multiprocessor containing a few (2-100) processors
each with its own hardware cache, special-purpose hardware sup-
port for shared memory and cache coherence, local physical mem-
ory, and a network interface to the external network. Two different
multiprocessor architectures are possible for the node: the symmet-
ric multiprocessor (SMP) or the cache-coherent non-uniform mem-
ory access multiprocessor (CC-NUMA). SMPs are the choice for
the near future due to their commercial success, but CC-NUMAs
would enable larger nodes due to their scalability.

Since each DSM node in a multigrain system is a multiproces-
sor, support for shared memory is already provided in hardware
between processors collocated on the same DSM node. To synthe-
size a single shared memory address space across the entire clus-
ter, multigrain systems must also provide a shared memory layer
between DSM nodes–this is accomplished in software using page-
based techniques, as initially proposed in [6]. The software shared
memory layer employs many of the same communication reduc-
tion techniques found in conventional page-based DSMs that use
uniprocessor workstations as DSM nodes, such as relaxed mem-
ory consistency, multiple writers [7], and lazy coherence [8]. In
addition, mechanisms specific to multigrain systems that optimize
for the collocation of processors within the same DSM node are
desirable for high performance (see Section 4.1). Finally, an im-

Machine Size

N
o

d
e

 S
iz

e

all-software

all
-h

ar
dw

ar
e

increasing performance

(increasing parallelism)

(i
n

cr
e

a
si

n
g

 h
a

rd
w

a
re

)

1

1

Figure 2: The machine space of multigrain systems parameterized
by node size along the Y-axis and machine size along the X-axis.
Performance increases as both parameters are scaled.

portant component of the inter-node shared memory layer is the
network which connects DSM nodes. We envision some kind of
high-performance local area network for this purpose, such as ATM
or switched Ethernet.

Multigrain systems are attractive architectures for two reasons.
First, they are extremely cost-effective because they employ com-
modity nodes. Small- to medium-scale multiprocessors are already
ubiquitous thanks to the demand for high-performance servers. As
desktop machines become more powerful, multiple processors will
make their way into client workstations as well. Second, multi-
grain systems provide support for fine-grain sharing. Conventional
wisdom maintains that software DSMs are incapable of supporting
fine-grain applications due to the lack of efficient mechanisms for
communication [9]. However, unlike traditional software DSMs
that use uniprocessor nodes, multigrain systems provide hardware
cache-coherence between processors within each multiprocessor;
therefore, fine-grain sharing is supported efficiently within DSM
nodes.

1.1 Scaling Multigrain Systems

Multigrain systems can be scaled along two different dimensions:
node size, and machine size. Node size is the number of proces-
sors in each shared memory multiprocessor (i.e. in a single DSM
node), and can be scaled by adding processors to each multiproces-
sor. Machine size is the total number of processors in the whole
system. Scaling machine size can be achieved by either adding
nodes, or by scaling node size. Each type of scaling has a differ-
ent impact on machine behavior. Scaling node size increases the
amount of shared memory hardware in the system. If node size is
scaled while the number of nodes is kept fixed, then the fraction
of processors that communicate via hardware shared memory in-
creases relative to the fraction of processors that communicate via
software shared memory. Therefore, node size scaling increases
the system’s ability to support fine-grain applications. In contrast,
scaling machine size increases the amount of parallelism supported
by the system.

Figure 2 graphically illustrates multigrain system scaling. The

figure plots node size along the Y-axis and machine size along
the X-axis.1 A loci of points is drawn which represents the com-
plete space of multigrain shared memory systems that can be real-
ized by scaling node size and machine size. The machine space is
bounded by two lines intersecting at a 45o angle. Each line cor-
responds to points in the machine space where node size scaling
causes the multigrain systems to degenerate into either all-software
or all-hardware systems, beyond which scaling is undefined. When
node size is scaled down to a single processor (lower bound), the
multigrain system becomes an all-software page-based DSM with
uniprocessor nodes. When node size is scaled up to the size of
the machine (upper bound), the multigrain system becomes an all-
hardware cache-coherent machine. Overall system performance
increases with scaling along both dimensions, as indicated by the
slanted line in Figure 2.

Understanding how multigrain system performance varies as a
function of both node size and machine size is important to sys-
tems architects. For instance, given a desired level of performance,
a systems architect can meet the performance specification either
by building a larger system with small nodes, or a smaller system
with large nodes,i.e. comparing systems along a curve in machine
space that has negative slope. Such a curve identifiesperformance-
equivalentsystems. However, making such a design tradeoff re-
quires knowing the effects of simultaneously scaling node and ma-
chine size. The interaction between these two types of scaling may
be complex, particularly for applications with lots of communica-
tion.

1.2 Studying Scalability

Preliminary studies [5] have provided early evidence that multi-
grain systems are effective architectures, even for difficult fine-
grain applications. However, these studies were performed on small
(32-processor) multigrain systems because they were limited by the
size of the experimental platform available for the study. Impor-
tant questions, such as how much fine-grain support is needed and
whether localized fine-grain sharing is adequate for applications,
cannot be addressed on such small systems. Furthermore, many
of the node and machine scaling effects discussed in Section 1.1
do not appear except on very large configurations. Therefore, ad-
dressing these issues experimentally, particularly those concerning
scalability, is impractical due to the size limitations of experimental
platforms. This paper adopts an alternate approach: use analysis to
study large-scale multigrain systems.

The remainder of this paper consists of two major parts. First,
we present a novel analysis technique, known as synchronization
analysis (Section 2), and performance model (Section 3) that en-
ables a quantitative evaluation of multigrain system performance
at arbitrary node and machine sizes. Second, Section 4 validates
the performance model and uses it to conduct an in-depth study
of the scalability of multigrain systems on several shared memory
programs. Section 5 presents our conclusions.

1While the figure suggests that the two dimensions are orthogonal, in actuality
scaling node size without changing machine size (i.e. a vertical line) implies that the
number of nodes is scaled inversely proportional to node size since scaling node size
by itself will increase machine size as well.

2

acquire X;

read A; read B; read C

compute();

write A; write B; write C

release X;

P0 P1

acquire X;

read A; read B; read C

compute();

write A; write B; write C

release X;

tim
e

acquire Y;

read D;

compute();

write D;

release Y;

P2

Figure 3: Given an explicitly parallel code, data dependences (dashed lines) between shared memory references performed on different
processors can be identified by examining synchronization dependences (solid bold line).

2 Analyzing Software DSM Behavior

Cache-memory systems are difficult to analyze because they ex-
hibit highly unpredictable behavior. Consider the following three
types of cache misses that can occur on a hardware cache-coherent
machine: capacity, conflict, and coherence. Predicting capacity and
conflict misses requires detailed information about each processor’s
reference stream, such as the number of unique references and how
temporally related references map to lines in the cache. Predicting
coherence misses requires knowledge about which references per-
formed on different processors conflict and how these conflicting
references interleave in time.

In this paper, we demonstrate that software shared memory sys-
tems are much more amenable to accurate analysis for two reasons.
First, software caching uses main memory for cache storage. This
provides an effectively infinite cache (on most workloads) which
is fully associative; therefore, software DSMs will never suffer ca-
pacity or conflict misses. Second, in software caching, the analysis
of coherence misses is made tractable by the properties of the re-
lease consistency (RC) memory model. RC allows the consistency
of updated data to be delayed until special memory operations in a
program, known asreleasesandacquires[10]. Furthermore, prop-
erly written shared memory programs for RC memory models must
include source-level annotations that identify release and acquire
operations. Therefore, analysis of the application source code can
yield all the potential communication sites in the application, and
ultimately, the communication volume.

In the next section, we present an analysis technique that com-
putes communication volume for applications running on software
DSMs, calledsynchronization analysis.

2.1 Synchronization Analysis

In most high-performance software shared memory systems [7, 11,
12], communication occurs at either releases or acquires; shared
memory accesses performed in between these special communica-
tion sites are buffered locally in order to minimize communication.
Therefore, allpotentialcommunication sites in an application can
be identified by creating an execution graph which represents the
dynamic execution of all acquires and releases. To compute total
communication volume, our analysis must perform two tasks: iden-

tify those dynamic acquire and release instances that actually gen-
erate communication, and for each of these communication sites,
compute the volume of communication generated.

The identification of communication sites can be greatly sim-
plified if we assume that applications use different names to per-
form coherence operations on unrelated data. Figure 3 illustrates
the behavior of an application that obeys this assumption. The fig-
ure shows three processors making mutually exclusive accesses to
four shared memory locations namedA, B, C, andD, using syn-
chronization variablesX andY . In this example, modifications
to locationsA, B, andC are always performed together, and use
synchronization variableX. Modifications to locationD are per-
formed separately and use synchronization variableY . Because
different synchronization variables are used, modifications to loca-
tion D can occur simultaneously with modifications to the other
three shared memory locations. However, processorsP0 andP1
must serialize their modifications to locationsA,B, andC because
they use the same synchronization variableX, thus enforcing mu-
tual exclusion.

Figure 3 shows that each synchronization dependence between
two processors represented as a release! acquire dependence over
the same synchronization variable signifies one or more data depen-
dences, and thus data sharing. In our example, processorsP0 and
P1 share locationsA, B, andC. This sharing is marked by the
release! acquire dependence over the synchronization variable
X from P1 to P0. Conversely, because there is no data sharing
between processorP2 and processorsP0 andP1, no release!
acquire dependence can be identified between these processors due
to the use of separate synchronization variables. In essence, our ap-
proach identifies data dependences, and thus communication sites,
through the analysis of synchronization dependences. Because we
use synchronization dependence information to infer data depen-
dences, we call the approach synchronization analysis.

After identifying the communication sites using synchroniza-
tion analysis, we must compute the volume of data communicated
at each site. This requires analyzing data access information to
determine what memory locations have been modified prior to the
communication site. In particular, we must compute the number
of unique shared memory locations modified within the code sur-
rounded by the acquire and the release prior to the release! ac-
quire synchronization dependence. For instance, the code just prior
to the synchronization dependence on variableX in Figure 3 run-

3

ning on processorP1 modifies three shared memory locations.
From these shared memory accesses, we must then compute the
number of unique pages that have been modified. Finally, we must
determine how many of these modified pages will actually require
coherence and thus contribute to communication across the syn-
chronization dependence. We pessimistically assume that all the
pages updated between the acquire and release are communicated.
This is a valid assumption when the programmer matches the gran-
ularity of synchronization to the granularity of data sharing. From
our experience, this assumption is valid for most applications.

While we will show that synchronization analysis can yield
very accurate predictions of communication volume on several ap-
plications, it has some limitations. Because the technique relies on
detecting communication through analysis of synchronization be-
havior, any communication that isn’t explicitly synchronized goes
undetected. For instance, synchronization analysis cannot detect
false sharing communication. Because false sharing arises in the
absence of true data dependences, communication due to false shar-
ing will never be explicitly synchronized. In addition, synchroniza-
tion analysis will not be effective on applications that permit data
races. An example might be an application which provides mutual
exclusion on shared data for writes, but does not do the same for
reads.

2.2 Clustering Analysis

Synchronization analysis accurately estimates communication vol-
ume for a program running on a software DSM via analysis of
the program’s source code. The technique can be applied on any
software DSM system that supports a release consistent memory
model, and that makes use of delayed coherence to reduce inter-
node communication. The presentation of synchronization analysis
in Section 2.1, however, assumes a flat all-software shared memory
system. The analysis technique must be extended to handle multi-
grain shared memory systems.

In multigrain systems, not all release! acquire dependences
invoke software communication; only those synchronization de-
pendences between processors on different DSM nodes incur soft-
ware overhead. Synchronization dependences between processors
inside a single multiprocessor node are handled by hardware mech-
anisms and thus bypass software shared memory. For synchroniza-
tion analysis to accurately predict communication on multigrain
systems, the analysis must consider the clustering of individual pro-
cessors within DSM nodes. The extension, known asclustering
analysis, is quite simple: out of all the release! acquire depen-
dences computed by synchronization analysis, identify only those
that cross DSM node boundaries as the communication-generating
dependences.

Figure 4 illustrates clustering analysis. The figure shows a syn-
chronization dependence graph from a hypothetical application in
which each graph node represents a piece of code surrounded by an
acquire and a release. The arrows with filled arrowheads represent
synchronization dependences, while the arrows with unfilled ar-
rowheads represent control dependences for graph nodes executed
on the same processor. In this particular example, there are four
processors,P0 throughP3, organized across two DSM nodes of
two processors each. The dotted line represents the physical node
boundary between the four processors. Of the seven synchroniza-
tion dependence arcs in the example graph, only three of the arcs

P0 P1 P2 P3

Figure 4: Clustering analysis determines which synchronization
dependences cause communication.

cross the DSM node boundary. Clustering analysis will identify
these three arcs as the communication-generating arcs. The other
four arcs are “hidden” from the software shared memory layer and
thus do not generate communication.

3 Performance Model

Section 2 discusses how to compute communication volume on a
multigrain shared memory system. In this section, we introduce
a performance model that predicts application runtime using the
computed communication volume.

To predict an application’s runtime on a multigrain system with
a total machine size ofP processors, our performance model as-
sumes that the execution time on aP -processor all-hardware cache-
coherent shared memory machine,Rhw , is known. In general,Rhw

is difficult to predict. We expect the value to be provided to the
model by measurement. The value can either be directly measured
on a hardware cache-coherent machine with the desired number of
processors, or in those instances where the target multigrain system
is too large, the value can be extrapolated to the desired machine
size from speedup curves obtained on a smaller hardware cache-
coherent machine. The performance model then predicts the exe-
cution time on the multigrain system by dilating the cache-coherent
runtime with the overheads that arise as a consequence of using
software shared memory. The prediction of execution time con-
tains five terms:

runtime = Rhw+SMlat+SMocc+SY Nlock+SY Nbar (1)

whereSMlat andSMocc (discussed in Section 3.1) are overheads
due to software shared memory, andSY Nlock andSYNbar (dis-
cussed in Section 3.2) are overheads due to synchronization. In
Equation 1,Rhw is constant irrespective of node size. In gen-
eral, thisRhw is too large for multigrain systems because some of
the inter-processor communication is handled by software shared
memory and is already accounted for in theSMlat andSMocc

terms. For simplicity, our model does not consider this effect.

3.1 Shared Memory Overhead

Our performance model accounts for two types of shared mem-
ory overhead: latency and occupancy. Figure 5 shows a simple

4

P1

P2

Busy

Latency

Occupancy

Figure 5: An application running on a software shared memory
system will incur two types of shared memory overhead: latency
and occupancy.

shared memory transaction that illustrates these two types of over-
head. The figure shows activity on two separate processors,P1 and
P2. Initially, both processors are executing application code. Then,
processorP1 performs a shared memory access that requires ser-
vice from processorP2 in software (for instance,P2 may be the
home node for a needed page). To satisfy this request,P1 sends
a message toP2 which invokes a software shared memory han-
dler onP2. The handler runs and eventually sends a message back
to P1 that satisfies the request. The transaction completes when
P1 returns to the application code. The time during whichP1
initiates the shared memory transaction and waits for remote ser-
vice constitutes latency overhead, and the time during whichP2
services the remote shared memory handler constitutes occupancy
overhead. Both take cycles away from application code.

Shared memory latency,SMlat, is simply the product of the
total number of pages communicated by the application and the
amount of latency incurred per page:

SMlat = (# pages) (latency per page) (2)

The total page volume is computed using synchronization anal-
ysis, as described in Section 2. The latency per page is the number
of cycles incurred by communicating a page of data across a re-
lease! acquire dependence through the software shared memory
layer, an overhead that is system dependent. In this study, we will
assume the system in [5], called MGS. Every page communicated
across a release! acquire dependence in MGS can suffer three
shared memory operations that require software service: page fault,
upgrade fault, and release. The page fault initially brings the page
from a remote memory node to the requesting processor’s node. If
the initial memory request that invoked the page fault was a load,
then any subsequent store performed on data in the page will suffer
an upgrade fault to upgrade the page from read privilege to write
privilege. Finally, when the processor is done modifying the page,
it will perform a release making all its updates visible to other pro-
cessors.

In addition to the three shared memory operations described
above, any other processor in the same node that wishes to ac-
cess data in the page will suffer a TLB fault in order to map the
page. This corresponds to the sharing pattern in which a subse-
quent release! acquire dependence occurs between processors on
the same DSM node (see Section 2.2). Notice, though, that no inter-
node communication is required for this sharing pattern since the
initial page fault performs all the necessary inter-node communica-
tion on behalf of the entire DSM node. Table 1 shows the latencies
for the three page-level overheads as well as the overhead of a TLB
fault as measured on the MGS system. The current version of MGS
available runs on the Alewife multiprocessor [13] which clocks at
20 MHz. All numbers are reported in Alewife cycles.

Event Latency
TLB Fault 2288
Page Fault 32323
Upgrade Fault 12441
Release 9992

Table 1: Software shared memory transaction latencies to move a
page across a release! acquire dependence on the MGS system.
All values are in cycles at 20 MHz.

Event Memory Client
TLB Fault 0 0
Page Fault 3608 6390
Upgrade Fault 150 0
Release 2803 0

Table 2: Software shared memory transaction occupancies to move
a page across a release! acquire dependence on the MGS system.
All values are in cycles at 20 MHz.

Shared memory occupancy,SMtot occ, can be computed in a
similar fashion as latency. The total amount of occupancy overhead
is again the product of two terms.

SMtot occ = (# pages) (occupancy per page) (3)

The first term in Equation 3 is identical to the first term in Equa-
tion 2, computed using synchronization analysis. The second term
in Equation 3 is the total occupancy, in cycles, incurred to com-
municate a page of data across a release! acquire dependence.
For each shared memory transaction whose latency is listed in Ta-
ble 1, there is a corresponding occupancy overhead charged to those
processors that must execute the software shared memory handlers
involved in each shared memory transaction. Table 2 lists these
occupancy overheads. The occupancy numbers have been broken
down into two categories: those that occur on the home node for the
page in question, labeled “Memory,” and those that occur on 3rd-
party remote clients, labeled “Client.” Again, all overheads were
measured on the MGS system. TLB faults are purely local opera-
tions handled entirely by the faulting processor; therefore, there is
no occupancy overhead associated with TLB faults. The other three
shared memory operations all invoke handlers on the home node.
In addition, the page fault handler must perform invalidation on the
remote client that owns the most recent copy in order to obtain a
coherent copy of the page (see [14] for more details).

For simplicity, we assume the total occupancy,SMtot occ, is
distributed evenly across all processors in the system. This is only
an approximation. In reality, the occupancy overhead may not be
distributed equally across processors either because a few proces-
sors are the home node for a disproportionate number of pages, or
because sharing on a few pages is disproportionately more frequent
compared to other pages.

While the expression in Equation 3 yields the total occupancy
overhead, not all of the occupancy overhead contributes to the ap-
plication’s critical path. It is possible that when a handler arrives,
the processor being interrupted is not performing useful work, but
is instead waiting on a remote software transaction. In this case,
the handler’s execution will be hidden and will not dilate execution
time. To account for this effect, we scaleSMtot occ by the proba-

5

µ

λ

Queue 1: M/M/P

Queue 0: M/M/1

n1

n0

λ

λ

Figure 6: Modeling lock contention using a closed queuing net-
work.

bility that a handler will actually interrupt useful work. This is the
effective occupancy overhead,SMocc.

SMocc =
�

Rhw + SMocc

Rhw + SMocc + SMlat

�
SMtot occ (4)

In Equation 4,Rhw is the parallel runtime without any software
overheads, as given in Equation 1. The fraction is the ratio of time
spent doing useful work to the total execution time; this is the prob-
ability that a handler will interrupt useful work. Notice we assume
that interrupting a handler already in progress will contribute to the
application’s critical path–that is whySMocc appears in the numer-
ator as well as the denominator. Also, we don’t account for those
cases when a handler partially contributes to the critical path. We
assume for simplicity that a handler either interrupts useful work,
or the handler interrupts an idle processor and its occupancy is com-
pletely hidden. Solving Equation 4 forSMocc yields the effective
occupancy seen by the application.

3.2 Synchronization Overhead

Our performance model accounts for two types of synchroniza-
tion overhead: contention at locks, and load imbalance at barri-
ers. While these overheads impact cache-coherent machines as well
as multigrain systems, their effects are typically more severe on
multigrain systems due to software shared memory. In this section,
we account for lock contention and barrier load imbalance caused
specifically by software shared memory.

Lock contention is the serialization of multiple lock operations
performed simultaneously on a single lock variable. In a software
shared memory system, it can be particularly severe due tocritical
section dilation[14]. When a processor successfully obtains a lock
and enters a critical section, it may access one or more shared mem-
ory locations that invoke software support. Especially for those
critical sections that involve very little computation, the introduc-
tion of expensive software shared memory overheads can signifi-
cantly lengthen the duration for which the lock is held by the pro-
cessor, thus leading to increased lock contention. For example, in
the Water benchmark which we will study in Section 4, lock con-
tention is not a significant problem for hardware cache-coherent
machines, but on multigrain systems, it accounts for as much as
40% of overall execution time.

We model lock contention due to critical section dilation using
the closed queuing network in Figure 6. The queuing network con-
sists of two queues, anM=M=1 queue (Queue 0) and anM=M=s

queue (Queue 1) wheres = P , the total number of processors in
the system. Customers represent processors, so there are a total of
P customers in the network which remains constant because the
network is closed. A customer entering Queue 0 represents a pro-
cessor trying to acquire a lock. If the queue is empty, then the cus-
tomer enters the server immediately, corresponding to a successful
lock acquire. If however the queue is busy, then the customer must
wait. The customer remains in Queue 0 for as long as the proces-
sor holds the lock which is modeled as an exponential process with
rate�. When a customer leaves Queue 0, it immediately enters
Queue 1 representing the release of the lock and the return to non-
critical section code. We model the inter-lock acquire time using
an exponential process with rate�.

The queuing network in Figure 6 is known as aJackson net-
work. For the particular Jackson network we use, the probability
mass function can be given as

p(n0; n1) =
1

G

�
1

�

�n0 �
1

�

�n1 1

n1!
(5)

whereG is a constant that normalizes the total cumulative mass to
the value 1. From the probability mass function, we can compute
the expectation ofn0, the average number of customers waiting
for the lock. Multiplying by the average lock service time,1

�
, and

the number of lock acquire operations yields the synchronization
overhead due to lock contention,SYNlock.

SY Nlock = (# lock acquires)

�
1

�

�
E[n0] (6)

The number of lock acquires, used in Equation 6, can be derived
from synchronization analysis. The average lock service time,1

�
,

is computed by examining the average amount of software shared
memory latency suffered inside a critical section. And the average
inter-lock acquire time,1

�
, is computed by dividing the application

execution time without software shared memory overhead by the
number of lock acquires. See [14] for a more detailed discussion.

In addition to more severe lock contention, the overhead of load
imbalance at barriers can be more severe in software shared mem-
ory systems as well. An imbalance in the number of shared mem-
ory operations performed will have a larger performance impact
on software systems as compared against hardware cache-coherent
machines because the cost for each shared memory operation is
much more expensive in the software case. To account for such
load imbalance caused by software shared memory, our perfor-
mance model computes the average imbalance in the number of
release! acquire dependences across processors during synchro-
nization analysis. From this analysis, the model computes the extra
software shared memory latency that arises due to the imbalance in
release! acquire dependences. This extra software shared mem-
ory latency due to load imbalance at barriers is theSY Nbar term
in Equation 1. We do not, however, account for load imbalance in
shared memory occupancy overhead.

4 Results

This section reports the results of an in-depth study on the scal-
ability of multigrain systems using our performance model. We

6

App Problem Size R32 S32
Jacobi 1k X 1k grid 51.24 30.0

4k X 4k grid
Water 1k molecules, 1 iteration 89.67 28.3

2k molecules, 1 iteration
Water-tiled 1k molecules, 1 iteration 86.65 28.5

2k molecules, 1 iteration
TSP 10 cities 3.14 17.6

18 cities
Unstructured 2800 nodes, 17377 edges 13.44 15.2

50653 nodes, 273165 edges

Table 3: Application summary. The five columns list the appli-
cation name, problem sizes studied, and running time (R32) and
speedup (S32) on 32 processors, respectively.

Error
App 1 2 4 8 16 Total

Jacobi -1.52 -1.11 -2.12 -2.32 -2.4 1.96
Water 16.4 -11.5 -13.8 -21.5 -16.0 16.2
Water-tiled 1.24 3.12 -1.3 -3.52 -3.58 2.76
TSP -24.1 -25.2 -1.26 3.96 -16.1 17.3
Unstructured -10.5 -25.7 -23.1 -23.8 -18.7 21.1

Table 4: Performance model validation. The five columns labeled
“Error” report the percentage discrepancy between the model and
measurements taken on MGS assuming a node size of 1 - 16 in
powers of 2. The column labeled “Total” reports the root-mean-
square average of the error columns.

describe the applications used in the study and the validation of
our model in Section 4.1. Section 4.2 presents the applications’
performance on multigrain systems with 512 processors. Finally,
Section 4.3 studies performance-equivalent multigrain systems.

4.1 Applications and Validation

For our scalability study, we use 5 shared memory applications: Ja-
cobi, Water, Water-tiled, TSP, and Unstructured. Jacobi performs
an iterative relaxation over a two-dimensional grid. Water, from
the SPLASH-I benchmark suite [15], is a molecular dynamics code
that simulates the motion of water molecules in three-dimensional
space. For Water, we only consider the force computation phase
which accounts for most of the parallel runtime. Water-tiled is
identical to Water except we perform a loop tiling transformation
that improves locality. TSP is the traveling salesman problem that
uses a branch and bound algorithm and a distributed work queue
to dynamically load balance work across the machine. Finally, Un-
structured [16] is a computation over an unstructured mesh. Again,
as in Water, we only consider a single phase of the computation
(loops that compute values across mesh edges) where the applica-
tion spends a significant amount of time.

Table 3 summarizes the applications. The second column spec-
ifies the different problem sizes used in our study. For each appli-
cation, the first problem size listed is the baseline problem used to
validate the predictions of our model. The second problem size is
the one used for the scaling study. Since the scaling study exam-
ines machines that are up to 16 times larger than the machine size
used for validation (512 processors as compared to 32 processors),
the second problem size was chosen such that sequential running
time increases by a factor of 16 relative to the baseline problem.

The last two columns, labeled “R32” and “S32,” report the run-
ning time (in millions of cycles) and speedup, respectively, of the
baseline problem size on a 32-node Alewife machine (all-hardware
shared memory).

The accuracy of our performance model was carefully validated
against measurements taken on the MGS system. MGS is an exper-
imental multigrain shared memory system that runs on the Alewife
multiprocessor. Two features of the MGS system make it attrac-
tive for our study. First, the software DSM layer in MGS is op-
timized for multigrain systems. It identifies pages that are shared
exclusively by processors within a single DSM node and relaxes
coherence management for these pages such that software over-
head is completely eliminated. Each page is brought back to nor-
mal coherence management when the exclusive sharing pattern is
violated.2 Second, MGS permits arbitrary reconfiguration of node
size because the DSM nodes are emulated throughvirtual cluster-
ing. MGS runs on a single large Alewife machine. Virtual clus-
tering controls what groups of processors are allowed to communi-
cate using cache-coherent shared memory by disallowing address
translation mappings across emulated nodes forcing communica-
tion between nodes to trap into software shared memory. While
virtual clustering allows flexible node size configuration, its dis-
advantage is that communication between virtual clusters is simu-
lated. MGS simulates a fixed inter-node communication latency of
30�sec. Contention in the inter-node network that would increase
this base latency in an actual multigrain system is not taken into
account (see [5] and [14] for more details).

Table 4 reports the validation of our performance model against
the MGS system. For each application, five runtime measurements
were taken on MGS with 32 total processors, one for each possible
node size (1, 2, 4, 8, and 16 processors). The middle columns of Ta-
ble 4, labeled “Error,” report the agreement between the prediction
from our model and the five MGS measurements. The last column
of Table 4 reports the root-mean-square error for all five individ-
ual predictions. In almost every case, our model underestimates
runtime, as indicated by the negative percentages. The undershoot
is due to the inability of synchronization analysis to capture false
sharing communication, and the lack of a model for serialization of
software shared memory handlers. Despite these deficiencies in the
model, however, the model agreement is within 18% of measured
runtime for four applications, and within 22% for all five.

4.2 Performance of Large Multigrain Systems

In this section, we report node size scaling results for our applica-
tions when machine size is fixed at 512 processors. Figures 7 and 8
show the normalized parallel runtime and speedup, respectively, for
all five of our applications. To obtain theRhw value needed by the
model, we interpolated the runtimes measured on the 32-processor
MGS system to obtain the 512-processor runtimes. In both figures,
we scale node size from 1 to 512 processors in powers of 2. The
smallest node size corresponds to all-software shared memory sys-
tems since each node is a uniprocessor, while the largest node size
corresponds to all-hardware cache-coherent machines since node
size equals machine size. In Figure 7, each runtime is normalized
against the parallel runtime on a 512-processor hardware cache-
coherent machine running the same application.

2This feature of MGS was taken into consideration when computing the overheads
for communicating a page across a synchronization dependence, as discussed in Sec-
tion 3.1.

7

 Unstructured
� Water
� Water-tiled

 TSP
� Jacobi

||0

|2

|4

|6

|8

|10

|12

 Node Size

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

1 2 4 8 16 32 64 128 256 512

�

�

�
� � � �

�
�

�

�

�

�
� � � � � � �

� � � � � � � � � �

Figure 7:Normalized execution time versus node size.
Total machine size is fixed at 512 processors.

 Unstructured
� Water
� Water-tiled

 TSP
� Jacobi

||0

|64

|128

|192

|256

|320

|384

|448

|512

 Node Size

 S
pe

ed
up

1 2 4 8 16 32 64 128 256 512

�

�
�

� � � �
�

�

�

�

�

�

�

�

�
� � �

�

�

�
�

� � � � � � �

Figure 8:Speedup versus node size. Total machine size
is fixed at 512 processors.

The application with the best performance is Jacobi. The nor-
malized parallel runtime at every node size in Figure 7 is very close
to 1 indicating that Jacobi’s performance is largely insensitive to
the relative amounts of hardware and software shared memory. For
Jacobi, software-supported shared memory, while expensive, is ad-
equate since communication happens so infrequently (coarse-grain
sharing). This result is confirmed by Figure 8 which shows that
Jacobi achieves high speedups across all node sizes.

At the other extreme, both Water and Unstructured have ex-
tremely demanding communication requirements. Both of these
applications exhibit frequent write sharing that results in signifi-
cant software coherence overhead in multigrain systems. As Fig-
ure 7 illustrates, performance is poor, particularly at small node
sizes. As node size is increased, an increasing amount of the write
sharing is supported by hardware cache coherence provided on the
node resulting in performance gains. In addition, Unstructured suf-
fers from load imbalance at barriers. As software shared memory
overheads are mitigated by increasing node size, so are the effects
that software shared memory has on load imbalance. For these
difficult applications, node size scaling provides significant perfor-
mance gains. However, even at very large node sizes (for instance,
256 processors), the all-hardware cache-coherent machine still out-
performs the multigrain system by a factor of 2 for Water and by
greater than a factor of 3 for Unstructured. Figure 8 shows the
same qualitative result–the speedups achieved for Water and Un-
structured on the multigrain systems are significantly lower than
those achieved on the hardware cache-coherent machine, though
Water achieves reasonable speedups at moderate node sizes.3

Finally, TSP and Water-tiled can achieve high performance on
multigrain systems, but they exhibitsomefine-grain sharing that
requires modest hardware support. TSP requires fine-grain mecha-
nisms to initially distribute work through the work queue data struc-
ture. In TSP, each node has a local work queue that is accessed
using hardware shared memory, and there is a single global work
queue that is accessed through software shared memory. When the
application begins, all the work is placed on the global queue, so

3For instance, at node sizes of 16 processors and higher, Water achieves a speedup
that exceeds 128.

severe lock contention (due to critical section dilation) occurs as all
the nodes compete for exclusive access to the global queue. Even-
tually, work is spread across the nodes and distribution to individual
processors happens efficiently through hardware shared memory
using the local queues. Scaling node size relieves some of the bur-
den of the initial work distribution from the global queue leading
to higher performance. In Water-tiled, a loop tiling transforma-
tion has been manually applied to the basic Water application to
increase locality. Processors performing computation on the same
tile share the tile in a fine-grain manner. Processors working on
separate tiles communicate only when the work on an entire tile has
been completed and a new tile is selected. Furthermore, the tiling
transformation picks a tile size to match the size of each node so
that fine-grain sharing is confined within nodes and uses hardware
shared memory, while only the less frequent communication of en-
tire tiles uses software shared memory. As node size is increased,
the computation-to-communication ratio for each tile increases as
well.

TSP and Water-tiled both exhibitclustered fine-grain sharing;
therefore, they make good use of hardware shared memory pro-
vided within small nodes. As Figure 7 illustrates, without any hard-
ware shared memory, these applications perform poorly. However,
beyond a node size of 8 or 16 processors, their performance closely
matches the all-hardware cache-coherent machine. For these appli-
cations, a little hardware support goes a long way.

4.3 Performance-Equivalence Results

Figures 9 through 13 report the model predictions for our five appli-
cations when both node size and machine size are scaled simulta-
neously. Each graph presents a slice of the machine space depicted
in Figure 2 between machine sizes of 32 and 512 processors. As
in Figure 2, we plot node size along the Y-axis and machine size
along the X-axis. The machine space is bounded from above by
all-hardware shared memory machines, from below by all-software
shared memory machines, and the rest are multigrain systems (see
Section 1.1). Dots have been placed inside the machine space at the
intersection of each node and machine size to indicate those archi-
tectures that were evaluated by our model. Finally, contours have

8

32 64 128 256 512
Machine Size

1

2

4

8

16

32

64

128

256

512

N
o
d
e

S
i
z
e

Figure 9:Jacobi.

32 64 128 256 512
Machine Size

1

2

4

8

16

32

64

128

256

512

N
o
d
e

S
i
z
e

Figure 10:Water.

been drawn through the machine space to indicate those machines
that deliver equivalent performance on each application. The spac-
ing between contours has been chosen such that every 2nd contour
represents a factor of two in performance, increasing from the ori-
gin to the upper-right corner of each graph.

In Figure 9, the insensitivity of Jacobi performance to the un-
derlying shared memory implementation as observed in Section 4.2
manifests itself in the form of vertical contours. The vertical con-
tours imply that at any machine size, the choice of node size is
irrelevant–Jacobi will perform well independent of this choice.

Figures 10 and 11 show the performance-equivalence results
for Water and Unstructured, respectively. As noted in Section 4.2,
these applications have significant communications requirements.
For Water, the contours are diagonal indicating that performance is
highly sensitive to node size since at any given machine size, scal-
ing node size will cross several contours. The diagonal contours
also imply that the performance lost by using smaller nodes can
be compensated by building a larger machine. For instance, our
model predicts that for Water, a 128-processor all-hardware shared
memory machine has equivalent performance to a 256-processor
multigrain system built using 16-way nodes. Overall, the results
for Water suggest that a factor of two increase in machine size is
roughly equivalent to a factor of eight reduction in node size. The

32 64 128 256 512
Machine Size

1

2

4

8

16

32

64

128

256

512

N
o
d
e

S
i
z
e

Figure 11:Unstructured.

32 64 128 256 512
Machine Size

1

2

4

8

16

32

64

128

256

512

N
o
d
e

S
i
z
e

Figure 12:TSP.

contours for Unstructured are close to horizontal except at very
large machine sizes, reflecting the fact that all-hardware machines
significantly outperform the multigrain systems on this difficult ap-
plication.

Finally, Figures 12 and 13 show the results for TSP and Water-
tiled. The clustered fine-grain sharing exhibited by these applica-
tions manifest themselves in the “bending” of the contours. As
long as node size is large enough (i.e. provide enough hardware
shared memory), the contours are vertical indicating that the multi-
grain systems are competitive with the hardware shared memory
machines. Once node size drops below a certain threshold (which
increases with machine size), then the contours bend and flatten in-
dicating a degradation in performance. The effect is particularly
pronounced in TSP.

5 Conclusion

We believe the modeling work presented in this paper demonstrates
that accurate performance prediction, which is crucial for exploring
the large systems needed to conduct scalability studies, is feasible
for software DSM systems. Our model predicts application runtime
within 18% of experimentally measured values for four of our ap-
plications, and within 22% for all five. We believe these accuracies

9

32 64 128 256 512

Machine Size

1

2

4

8

16

32

64

128

256

512

C
l
u
s
t
e
r

S
i
z
e

Figure 13: Water-tiled.

are adequate for the purpose of scalability evaluation.

In addition, several results were obtained regarding the scala-
bility of multigrain systems. First, we find that multigrain systems
universally outperform all-software systems at all machine sizes.
Our conclusion is that multigrain systems offer much better scal-
ability than conventional software DSMs built from uniprocessor
workstation nodes. Second, we find that on difficult fine-grain ap-
plications, multigrain systems cannot match all-hardware machines
in absolute performance. As we saw on the Water and Unstructured
workloads for 512 processors, all-hardware machines provide be-
tween a factor of 2 or 3 in performance over the highest performing
multigrain systems. Therefore, we conclude that all-hardware ma-
chines exhibit superior scalability. However, multigrain systems
can closely match the absolute performance of all-hardware ma-
chines on applications with clustered fine-grain sharing patterns,
though such applications may require compiler-assisted optimiza-
tions to improve locality (e.g. Water-tiled). Third, on difficult ap-
plications, multigrain systems may provide enough performance to
be competitive with slightly smaller all-hardware machines. For in-
stance, on the Water workload, we find that a 256-processor multi-
grain system built using 16-way nodes performs roughly equiv-
alent to a 128-processor hardware cache-coherent machine. The
larger multigrain system may have lower cost and thus better cost-
performance because it uses commodity small-scale nodes. Unfor-
tunately, on the most difficult application, Unstructured, the perfor-
mance discrepancy is so large that multigrain systems are unlikely
to deliver better cost-performance than all-hardware machines. Fi-
nally, our results show that the requisite node size scaling that al-
lows multigrain systems to be competitive with all-hardware ma-
chines in those instances mentioned above is modest, even when
total machine size is scaled to 512 processors. On the TSP and
Water-tiled workloads, large-scale multigrain systems are compet-
itive with all-hardware machines when node size is as small as 16
processors. We conclude that multigrain systems demonstrate scal-
ability even without significant node size scaling.

References

[1] Rudrajit Samanta, Angelos Bilas, Liviu Iftode, and Jaswinder Pal
Singh. Home-Based SVM Protocols for SMP Clusters: Design and
Performance. InProceedings of the 4th International Symposium on

High-Performance Computer Architecture, Las Vegas, NV, February
1998. IEEE.

[2] Robert Stets, Sandhya Dwarkadas, Nikolaos Hardavellas, Galen Hunt,
Leonidas Kontothanassis, Srinivasan Parthasarathy, and Michael
Scott. Cashmere-2L: Software Coherent Shared Memory on a Clus-
tered Remote-Write Network. InProceedings of the 16th ACM Sym-
posium on Operating Systems Principles, Saint-Malo, France, Octo-
ber 1997. ACM.

[3] Daniel J. Scales, Kourosh Gharachorloo, and Anshu Aggarwal. Fine-
Grain Software Distributed Shared Memory on SMP Clusters. InPro-
ceedings of the 4th IEEE Symposium on High-Performance Computer
Architecture, Las Vegas, NV, February 1997.

[4] Andrew Erlichson, Neal Nuckolls, Greg Chesson, and John Hennessy.
SoftFLASH: Analyzing the Performance of Clustered Distributed Vir-
tual Shared Memory. InProceedings of the Seventh ACM Symposium
on Architectural Support for Programming Languages and Operating
Systems, pages 210–221, Cambridge, Massachusetts, October 1996.
ACM.

[5] Donald Yeung, John Kubiatowicz, and Anant Agarwal. MGS: A
Multigrain Shared Memory System. InProceedings of the 1996 In-
ternational Symposium on Computer Architecture, Philadelphia, May
1996.

[6] Kai Li and Paul Hudak. Memory Coherence in Shared Virtual Mem-
ory Systems.ACM Transactions on Computer Systems, 7(4):321–359,
November 1989.

[7] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implemen-
tation and Performance of Munin. InProceedings of the 13th Annual
Symposium on Operating Systems Principles, pages 152–164, Octo-
ber 1991.

[8] Pete Keleher, Alan L. Cox, and Willy Zwaenepoel. Lazy Release
Consistency for Software Distributed Shared Memory. InProceedings
of the 19th Annual Symposium on Computer Architecture, pages 13–
21, Gold Coast, Australia, May 1992.

[9] Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui Lu, Ra-
makrishnan Rajamony, and Willy Zwaenepoel. Software Versus Hard-
ware Shared-Memory Implementation: A Case Study. InProceedings
of the 21st Annual International Symposium on Computer Architec-
ture, pages 106–117, Chicago, IL, April 1994.

[10] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. Hennessy. Memory Consistency and Event Ordering in Scalable
Shared-Memory Multiprocessors. InProceedings 17th Annual Inter-
national Symposium on Computer Architecture, New York, June 1990.
IEEE.

[11] Pete Keleher, Alan Cox, Sandhya Dwarkadas, and Willy Zwaenepoel.
TreadMarks: Distributed Shared Memory on Standard Workstations
and Operating Systems.Proceedings of the 1994 Usenix Conference,
pages 115–131, January 1994.

[12] Kirk Johnson, M. Frans Kaashoek, and Deborah A. Wallach. CRL:
High-Performance All-Software Distributed Shared Memory. InPro-
ceedings of the 15th ACM Symposium on Operating Systems Princi-
ples, Copper Mountain, Colorado, December 1995.

[13] Anant Agarwal et. al. The MIT Alewife Machine: Architecture and
Performance. InProceedings of the 22nd Annual International Sym-
posium on Computer Architecture, pages 2–13, June 1995.

[14] Donald Yeung. Multigrain Shared Memory. MIT-LCS TR-743, Mas-
sachussetts Institute of Technology, February 1998.

[15] J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel
Applications for Shared-Memory. Technical Report CSL-TR-92-526,
Stanford University, June 1992.

[16] Shubu Mukherjee, Shamik Sharma, Mark Hill, Jim Larus, Anne
Rogers, and Joel Saltz. Efficient Support for Irregular Applications
on Distributed-Memory Machines. InProceedings of the 5th An-
nual Symposium on Principles and Practice of Parallel Programming,
pages 68–79. ACM, July 1995.

10

